pyHPDM Documentation
Release 0.9.9

Dominic Hunt

Mar 22, 2020

Contents

Prerequisites
Installation
Usage
Testing

License

Documentation
6.1 simulation module
simulation Module
6.1.1.1
6.2 dataFitting module
dataFitting Module
6.2.1.1
6.2.1.2
6.2.1.3
6.3 data module
data Module
6.3.1.1
6.3.1.2
6.3.1.3
6.4 taskGenerator module

6.1.1

6.2.1

6.3.1

6.4.1

6.4.1.1

6.4.1.2

6.5 tasks package
tasks Package
Submodules
6.5.2.1
6.52.2
6.52.3
6.5.2.4
6.5.2.5
6.5.2.6
6.5.2.7
6.5.2.8
6.5.2.9

6.5.1
6.5.2

Class Inheritance Diagram

tasks.balltask module
tasks.basic module
tasks.beads module
tasks.decks module
tasks.taskTemplate module
tasks.pavlov module
tasks.probSelect module
tasks.probStim module
tasks.weather module

6.6 modelGenerator module

6.6.1 modelGenerator Module e 57

6.6.1.1 Classes i e e 57

6.6.1.2 Class Inheritance Diagram 58

6.7 model package e 58
6.7.1 Subpackages 58
6.7.1.1 model.decision package 58

6.7.2 Submodules e 64
6.7.2.1 model.ACBasicmodule 64

6.7.22 modellACEmodule 66

6.7.2.3 model ACESmodule 68

6.7.24 model.BPmodule 70

6.7.2.5 model.BPEmodule 72

6.7.2.6 model.BPVmodule 74

6.7.2.77 model.OpALmodule 75

6.7.2.8 model.OpALEmodule L. 78

6.7.2.9 model.OpALSmodule 81

6.7.2.10 model.OpALSEmodule e 84

6.7.2.11 model.OpAL_Hmodule 87

6.7.2.12 model. OpAL_HEmodule, 89

6.7.2.13 model.modelTemplate module 92

6.7.2.14 model.qLearnmodule 103

6.7.2.15 model.qlearn2module oo 105

6.7.2.16 model.qLearn2Emodule o .. 107

6.7.2.17 model.qLearnCorrmodule 109

6.7.2.18 model.qLearnEmodule oo 112

6.7.2.19 model.qLearnECorrmodule o000 0oL 114

6.7.2.20 model.qLearnFmodule L oo 116

6.7.2.21 model.qlearnKmodule 118

6.7.2.22 model.qLearnMetamodule Lo 120

6.7.2.23 model.randomBiasmodule oo oo 122

6.7.2.24 model.tdOmodule 124

6.7.2.25 modeltdEmodule 126

6.7.2.26 model.tdrmodule 128

6.8 fitAlgspackage e e e e e e e e e e e 130
6.8.1 fitAlgs Package e e 130

6.8.2 Submodules e 130
6.8.2.1 fitAlgs.basinhoppingmodule L. 130

6.8.2.2 fitAlgs.boundFuncmoduleo 132

6.8.2.3 fitAlgs.evolutionarymodule Lo Lo 133

6.8.2.4 fitAlgs.fitAlgmodule L 135

6.8.2.5 fitAlgsfitSimsmoduleo oL 140

6.8.2.6 fitAlgsleastsqmoduleo oL 146

6.8.2.7 fitAlgs.minimize module L. 147

6.8.2.8 fitAlgs.qualityFuncmodule o 149

6.9 outputtingmodule L. e e e e e e e e e 154
6.9.1 outputting Module e 154
6.9.1.1 Functions e e e e 154

6.9.1.2 Classes e e 160

6.9.1.3 Class Inheritance Diagram 162

6.10 utilsmodule e e e e 167
6.10.1 wutilsModule L e e 167
6.10.1.1 Functions 167

6.10.1.2 Classes« o v i v e e e e e 179

6.10.1.3 Class Inheritance Diagram, 179

7 Indices and tables 189
Python Module Index 191

Index 193

pyHPDM Documentation, Release 0.9.9

python Human Probabilistic Decision-Modelling (pyHPDM) is a framework for modelling and fitting the re-
sponses of people to probabilistic decision making tasks.

Contents 1

pyHPDM Documentation, Release 0.9.9

2 Contents

cHAPTER 1

Prerequisites

This code has been tested using Python 2.7. Apart from the standard Python libraries it also depends on the
SciPy librariesand a few others listed in requirements.txt. For those installing Python for the first time I
would recommend the Anaconda Python distribution.

http://www.scipy.org/
https://store.continuum.io/cshop/anaconda/

pyHPDM Documentation, Release 0.9.9

4 Chapter 1. Prerequisites

CHAPTER 2

Installation

For now this is just Python code that you download and use, not a package.

pyHPDM Documentation, Release 0.9.9

6 Chapter 2. Installation

CHAPTER 3

Usage

The framework has until now either been run with a run script or live in a command-line (or jupyter notebook).

A task simulation can be simply created by running simulation.simulation (). Equally, for fitting partic-
ipant data, the function is dataFitting.data_fitting. For now, no example data has been provided.

More complex example running scripts can be found in . /runScripts/. Here, a number of scripts have been
created as templates: runScript_sim.py for simulating the probSelect task and runScript_fit.py
for fitting the data generated from runScript_sim.py. A visual display of the interactions in one of these
scripts will soon be created.

A new method of passing in the fitting or simulation configuration is to use a YAML configuration file. This
is done, for both simulations and data fitting, using the function start.run_script For example, to run
the YAML configuration equivalent to the runScript_sim.py from a command line would be :start.
run_script ('./runScripts/runScripts_sim.yaml').

http://jupyter.org/

pyHPDM Documentation, Release 0.9.9

8 Chapter 3. Usage

cHAPTER 4

Testing

Testing is done using pytest.

https://pytest.org

pyHPDM Documentation, Release 0.9.9

10 Chapter 4. Testing

CHAPTER B

License

This project is licenced under the MIT license.

11

https://choosealicense.com/licenses/mit/

pyHPDM Documentation, Release 0.9.9

12 Chapter 5. License

CHAPTER O

Documentation

The documentation can be found on readthedocs or in . /doc/_build/html, with the top level file being
index.html

To update the documentation you will need to install Sphinx and a set of extensions. The list of extensions can be
found in . /doc/conf . py. To update the documentation follow the instruction in . /doc/readme .md

Contents:

6.1 simulation module

6.1.1 simulation Module

Author Dominic Hunt

6.1.1.1 Functions

csv_model_simulation(modelData, simID, Saves the fitting data to a CSV file

)

log_simulation_parameters(task_parameters, Writes to the log the description and the label of the

L) task and model
record_simulation(file_name_generator, ...) Records the data from an task-model run.
run([task_name, task_changing_properties, .. .]) A framework for letting models interact with tasks

and record the data

csv_model_simulation

simulation.csv_model_simulation (modelData, simID, file_name_generator)
Saves the fitting data to a CSV file

Parameters
* modelData (dict)— The data from the model

* simID (string)— The identifier for the simulation

13

https://pyhpdm.readthedocs.io
https://docs.python.org/3/library/stdtypes.html#dict

pyHPDM Documentation, Release 0.9.9

* file_name_generator (function)- Creates a new file with the name <handle>
and the extension <extension>. It takes two string parameters: (handle, extension)
and returns one £ileName string

log_simulation_parameters

simulation.log_simulation_parameters (task_parameters, model_parameters, simID)
Writes to the log the description and the label of the task and model

Parameters
* task_parameters (dict) — The task parameters
* model_parameters (dict)— The model parameters
* simID (string)— The identifier for each simulation.

See also:

recordSimParams () Records these parameters for later use

record_simulation

simulation.record_simulation (file_name_generator, task_data, model_data, simID,
pickle=False)
Records the data from an task-model run. Creates a pickled version

Parameters

*» file name_generator (function)—- Creates a new file with the name <handle>
and the extension <extension>. It takes two string parameters: (handle, extension)
and returns one £ileName string

e task_data (dict)— The data from the task
* model_data (dict)— The data from the model
* simID (basestring)— The label identifying the simulation

* pickle (bool, optional) - If true the data for each model, task and participant
is recorded. Defaultis False

See also:

picklelog () records the picked data

run

simulation.run (fask_name=u’Basic’, task_changing_properties=None,
task_constant_properties=None, model_name=u’QLearn’,
model_changing_properties=None, model_constant_properties=None,
model_changing_properties_repetition=1, label=None, con-

fig_file=None, output_path=None, pickle=False, min_log_level=u’INFO’,

numpy_error_level=u’log’)
A framework for letting models interact with tasks and record the data

Parameters

* task_name (string)— The name of the file where a tasks.taskTemplate.Task class
can be found. Default Basic

14 Chapter 6. Documentation

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool

pyHPDM Documentation, Release 0.9.9

* task_changing properties (dictionary of floats or 1lists of
floats) — Parameters are the options that you are or are likely to change across task
instances. When a parameter contains a list, an instance of the task will be created for
every combination of this parameter with all the others. Default None

* task_constant_properties (dictionary of float, string or
binary valued elements)— These contain all the the task options that describe
the task being studied but do not vary across task instances. Default None

* model_name (string)— The name of the file where a model.modelTemplate.Model
class can be found. Default QLearn

* model_changing_properties (dictionary containing floats or
lists of floats, optional)— Parameters are the options that you are or are
likely to change across model instances. When a parameter contains a list, an instance
of the model will be created for every combination of this parameter with all the others.
Default None

* model_constant_properties (dictionary of float, string or
binary valued elements, optional) — These contain all the the model
options that define the version of the model being studied. Default None

* model_changing properties_repetition (int, optional) - The
number of times each parameter combination is repeated.

* config_file (string, optional)— The file name and path of a . yaml con-
figuration file. Overrides all other parameters if found. Default None

* output_path (string, optional)-— The path that will be used for the run out-
put. Default None

pickle (bool, optional) - If true the data for each model, task and participant
is recorded. Default is False

* label (string, optional)— The label for the simulation. Default None, which
means nothing will be saved

* min_log_level (basestring, optional)— Defines the level of the log from
(DEBUG, INFO, WARNING, ERROR, CRITICAL). Default INFO

* numpy_error_level ({'log', 'raise'}) — Defines the response to numpy
errors. Default 10g. See numpy.seterr

See also:
tasks.taskTemplate (), model.modelTemplate ()
Author Dominic Hunt

simulation.esv_model_simulation (modelData, simID, file_name_generator)
Saves the fitting data to a CSV file

Parameters
* modelData (dict)— The data from the model
* simID (string)— The identifier for the simulation

* file_name_generator (function)- Creates a new file with the name <handle>
and the extension <extension>. It takes two string parameters: (handle, extension)
and returns one £ileName string

simulation.log_simulation_parameters (fask_parameters, model_parameters, simiD)
Writes to the log the description and the label of the task and model

Parameters
* task_parameters (dict) — The task parameters

* model_parameters (dict)— The model parameters

6.1. simulation module 15

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

pyHPDM Documentation, Release 0.9.9

¢ simID (string)— The identifier for each simulation.

See also:
recordSimParams () Records these parameters for later use

simulation.record_simulation (file_name_generator, task_data, model_data, simID,

pickle=False)
Records the data from an task-model run. Creates a pickled version

Parameters

* file_name_generator (function) - Creates a new file with the name <handle>
and the extension <extension>. It takes two string parameters: (handle, extension)
and returns one £ileName string

e task_data (dict) - The data from the task
¢ model_data (dict)— The data from the model

* simID (basestring) — The label identifying the simulation

pickle (bool, optional) - If true the data for each model, task and participant
is recorded. Default is False

See also:

pickleLog () records the picked data

simulation.run (task_name=u’Basic’, task_changing_properties=None,
task_constant_properties=None, model_name=u’QLearn’,
model_changing_properties=None, model_constant_properties=None,
model_changing_properties_repetition=1, label=None, con-

fig_file=None, output_path=None, pickle=False, min_log_level=u’INFO’,
numpy_error_level=u’log’)
A framework for letting models interact with tasks and record the data

Parameters

* task_name (string)— The name of the file where a tasks.taskTemplate.Task class
can be found. Default Basic

* task_changing properties (dictionary of floats or 1lists of
floats) — Parameters are the options that you are or are likely to change across task
instances. When a parameter contains a list, an instance of the task will be created for
every combination of this parameter with all the others. Default None

* task_constant_properties (dictionary of float, string or
binary valued elements)— These contain all the the task options that describe
the task being studied but do not vary across task instances. Default None

* model_name (string)— The name of the file where a model.modelTemplate.Model
class can be found. Default QL.earn

* model_changing_properties (dictionary containing floats or
lists of floats, optional)— Parameters are the options that you are or are
likely to change across model instances. When a parameter contains a list, an instance
of the model will be created for every combination of this parameter with all the others.
Default None

* model_constant_properties (dictionary of float, string or
binary valued elements, optional) — These contain all the the model
options that define the version of the model being studied. Default None

* model_changing_properties_repetition (int, optional) — The
number of times each parameter combination is repeated.

16 Chapter 6. Documentation

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

pyHPDM Documentation, Release 0.9.9

* config_file (string, optional)— The file name and path of a . yaml con-
figuration file. Overrides all other parameters if found. Default None

* output_path (string, optional)-— The path that will be used for the run out-
put. Default None

pickle (bool, optional) - If true the data for each model, task and participant
is recorded. Default is False

e label (string, optional)— The label for the simulation. Default None, which
means nothing will be saved

* min_log_level (basestring, optional)— Defines the level of the log from
(DEBUG, INFO, WARNING, ERROR, CRITICAL). Default INFO

* numpy_error_level ({'log', 'raise'}) — Defines the response to numpy
errors. Default 10g. See numpy.seterr

See also:

tasks.taskTemplate (), model.modelTemplate ()

6.2 dataFitting module

6.2.1 dataFitting Module

Author Dominic Hunt

6.2.1.1 Functions

fit_record(participant_fits, file_name_generator) Returns the participant fits summary as a csv file

log fitting parameters(fit_info) Records and outputs to the log the parameters associ-
ated with the fitting algorithms
log _model_fitted parameters(...) Logs the model and task parameters that used as initial
fitting conditions
log _model_fitting_ parameters(model, Logs the model and task parameters that used as initial
.2) fitting conditions
record_fitting(fitting_data, label, ...[,...]) Records formatted versions of the fitting data
record _participant_fit(participant, ...[, Record the data relevant to the participant fitting
)
run([data_folder, data_format, ...]) A framework for fitting models to data for tasks, along
with recording the data associated with the fits.
x1lsx_fitting data(fitting_data, label, ...) Saves the fitting data to an XLSX file
fit_record

dataFitting.fit_record (participant_fits, file_name_generator)
Returns the participant fits summary as a csv file

Parameters
* participant_fits (dict)— A summary of the recovered parameters

* file_name_generator (function)— Creates a new file with the name <handle>
and the extension <extension>. It takes two string parameters: (handle, extension)
and returns one £ileName string

6.2. dataFitting module 17

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict

pyHPDM Documentation, Release 0.9.9

log_fitting_parameters

dataFitting.log_fitting parameters (fir_info)
Records and outputs to the log the parameters associated with the fitting algorithms

Parameters £it_info (dict)— The details of the fitting

log_model_fitted_parameters

dataFitting.log_model_fitted_parameters (model_fit_variables, model_parameters,

fit_quality, participant_name)
Logs the model and task parameters that used as initial fitting conditions

Parameters

* model_fit_variables (dict) - The model parameters that have been fitted over
and varied.

* model_parameters (dict)— The model parameters for the fitted model
* fit_quality (float) - The value of goodness of fit

* participant_name (int or string)- The identifier for each participant

log_model_fitting_parameters

dataFitting.log_model_fitting_ parameters (model, model_fit_variables,

model_other_args)
Logs the model and task parameters that used as initial fitting conditions

Parameters
* model (string)— The name of the model

* model_fit_variables (dict) — The model parameters that will be fitted over
and varied.

* model_other_args (dict) — The other parameters used in the model whose at-
tributes have been modified by the user

record_fitting

dataFitting.record_ fitting (fitting_data, label, participant, participant_model_variables, par-

ticipant_fits, file_name_generator, save_fitting_progress=False)
Records formatted versions of the fitting data

Parameters

» fitting_data (dict, optional) — Dictionary of details of the different fits,
including an ordered dictionary containing the parameter values tested, in the order
they were tested, and a list of the fit qualities of these parameters.

* label (basestring)— The label used to identify the fit in the file names
* participant (dict)— The participant data

* participant_model_variables (dict of string) — A dictionary of
model settings whose values should vary from participant to participant based on the
values found in the imported participant data files. The key is the label given in the
participant data file, as a string, and the value is the associated label in the model, also
as a string.

18 Chapter 6. Documentation

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

pyHPDM Documentation, Release 0.9.9

* participant_fits(defaultdict of 1ists)-— A dictionary to be filled with
the summary of the participant fits

* file_name_generator (function)— Creates a new file with the name <handle>
and the extension <extension>. It takes two string parameters: (handle, extension)
and returns one £ileName string

* save_fitting progress (bool, optional) — Specifies if the results from
each iteration of the fitting process should be returned. Default False

Returns participant_fits — A dictionary to be filled with the summary of the previous and cur-
rent participant fits

Return type defaultdict of lists

record_participant_fit

dataFitting.record_participant_f£fit (participant, part_name, model_data, model_name,
fitting_data, partModelVars, participantFits, file-
NameGen=None, pickleData=False, saveFitting-

Progress=False, expData=None)
Record the data relevant to the participant fitting

Parameters
* participant (dict)— The participant data
* part_name (int or string)- The identifier for each participant
* model_data (dict)— The data from the model
* model_name (basestring) — The label given to the model

» fitting data (dict) — Dictionary of details of the different fits, including an or-
dered dictionary containing the parameter values tested, in the order they were tested,
and a list of the fit qualities of these parameters

* partModelVars (dict of string)-— A dictionary of model settings whose val-
ues should vary from participant to participant based on the values found in the imported
participant data files. The key is the label given in the participant data file, as a string,
and the value is the associated label in the model, also as a string.

* participantFits (defaultdict of 1lists)— A dictionary to be filled with
the summary of the participant fits

e fileNameGen (function or None)- Creates a new file with the name <handle>
and the extension <extension>. It takes two string parameters: (handle, extension)
and returns one £ileName string. Default None

* pickleData (bool, optional)-Iftrue the data for each model, task and partic-
ipant is recorded. Default is False

* saveFittingProgress (bool, optional) - Specifies if the results from each
iteration of the fitting process should be returned. Default False

* expData (dict, optional)- The data from the task. Default None

Returns participantFits — A dictionary to be filled with the summary of the previous and cur-
rent participant fits

Return type defaultdict of lists

See also:

outputting.pickleLog () records the picked data

6.2. dataFitting module 19

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict

pyHPDM Documentation, Release 0.9.9

run

dataFitting.run (data_folder=u’./", data_format=u’csv’, data_file_filter=None,
data_file_terminal_ID=True, data_read_options=None, data_split_by=None,
data_group_by=None, data_extra_processing=None, model_name=u’QLearn’,
model_changing_properties=None, model_constant_properties=None, participan-
tID=u’Name’, participant_choices=u’Actions’, participant_rewards=u’Rewards’,

model_fit_value=u’ActionProb’, fit_subset=None, task_stimuli=None,
participant_action_options=None, fit_method=u’Evolutionary’,
fit_method_args=None, fit_measure=u’-loge’, fit_measure_args=None,

fit_extra_measures=None, participant_varying_model_parameters=None, la-
bel=None, save_fitting_progress=False, config_file=None, output_path=None,
pickle=False, boundary_excess_cost_function=None, min_log_level=u’INFO’,
numpy_error_level=u’log’, fit_float_error_response_value=1e-100, calcu-

late_covariance=False)
A framework for fitting models to data for tasks, along with recording the data associated with the fits.

Parameters

e data_folder (string or list of strings, optional) — The folder
where the data can be found. Default is the current folder.

* data_format (string, optional)- The file type of the data, from mat, csv,
x1lsx and pkl. Defaultis csv

* data_file_filter (callable, string, list of strings or
None, optional) — A function to process the file names or a list of possible
prefixes as strings or a single string. Default None, no file names removed

e data_file_terminal_ 1ID (bool, optional) - Is there an ID number at the
end of the filename? If not then a more general search will be performed. Default True

* data_read_options (dict, optional)-The keyword arguments for the data
importing method chosen

* data_split_by(string or list of strings, optional)-Ifmultiple
participant datasets are in one file sheet, this specifies the column or columns that can
distinguish and identify the rows for each participant. Default None

* data_group_by (list of strings, optional) — A list of parts of file-
names that are repeated across participants, identifying all the files that should be
grouped together to form one participants data. The rest of the filename is assumed
to identify the participant. Default is None

* data_extra_processing(callable, optional)- A functionthat modifies
the dictionary of data read for each participant in such that it is appropriate for fitting.
Default is None

* model_name (string, optional) — The name of the file where a
model.modelTemplate.Model class can be found. Default QLearn

* model_changing_properties (dictionary with values of tuple
of two floats, optional)— Parameters are the options that you allow to vary
across model fits. Each model parameter is specified as a dict key. The value is a tu-
ple containing the upper and lower search bounds, e.g. alpha has the bounds (0, 1).
Default None

* model_constant_properties (dictionary of float, string or
binary valued elements, optional) — These contain all the the model
options that define the version of the model being studied. Default None

* participantID (basestring, optional)— The key (label) used to identify
each participant. Default Name

20 Chapter 6. Documentation

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict

pyHPDM Documentation, Release 0.9.9

* participant_choices (string, optional) — The participant data key of
their action choices. Default 'Actions'

* participant_rewards (string, optional)-The participantdatakey of the
participant reward data. Default ' Rewards'

* model_ fit_value (string, optional) — The key to be compared in the
model data. Default 'ActionProb'

e fit_ subset (float ('Nan'), None, "rewarded", "unrewarded", "all"
or list of int, optional) — Describes which, if any, subset of trials will be used to evaluate
the performance of the model. This can either be described as a list of trial numbers or,
by passing - "al1l" for fitting all trials - f1loat ('Nan') or "unrewarded" for all
those trials whose feedback was f1oat ('Nan') - "rewarded" for those who had
feedback that was not float ('Nan') Default None, which means all trials will be
used.

* task_stimuli (list of strings or None, optional) - The keys con-
taining the observational parameters seen by the participant before taking a decision on
an action. Default None

* participant_action_options (string or list of strings or
None or one element list with a list, optional) — If a string or
list of strings these are treated as dict keys where the valid actions for each trial can be
found. If None then all trials will use all available actions. If the list contains one list
then it will be treated as a list of valid actions for each trialstep. Default ' None'

e fit_method (string, optional) - The fitting method to be used. The names
accepted are those of the modules in the folder fitAlgs containing a FitAlg class. Default
'evolutionary'

e fit_method_args (dict, optional) — A dictionary of arguments specific to
the fitting method. Default None

 fit_measure (string, optional)-Thename of the function used to calculate
the quality of the fit. The value it returns provides the fitter with its fitting guide. Default
-loge

* fit_measure_args (dict, optional)— The parameters used to initialise fit-
Measure and extraFitMeasures. Default None

e fit_extra measures (list of strings, optional) — List of fit mea-
sures not used to fit the model, but to provide more information. Any arguments needed
for these measures should be placed in fitMeasureArgs. Default None

* participant_varying model_parameters (dict of string,
optional) — A dictionary of model settings whose values should vary from
participant to participant based on the values found in the imported participant data
files. The key is the label given in the participant data file, as a string, and the value is
the associated label in the model, also as a string. Default { }

* label (string, optional)— The label for the data fitting. Default None will
mean no data is saved to files.

* save_fitting_ progress (bool, optional) — Specifies if the results from
each iteration of the fitting process should be returned. Default False

* config_file (string, optional)— The file name and path of a . yaml con-
figuration file. Overrides all other parameters if found. Default None

* output_path (string, optional)- The path that will be used for the run out-
put. Default None

* pickle (bool, optional) — If true the data for each model, and participant is
recorded. Defaultis False

6.2. dataFitting module 21

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

pyHPDM Documentation, Release 0.9.9

* boundary_ excess_cost_function (basestring or callable
returning a function, optional) — The function is used to calculate
the penalty for exceeding the boundaries. Default is boundFunc.scalarBound ()

* min_log_level (basestring, optional)— Defines the level of the log from
(DEBUG, INFO, WARNING, ERROR, CRITICAL). Default INFO

* numpy_error_level ({'log', 'raise'}) — Defines the response to numpy
errors. Default 10g. See numpy.seterr

e fit_float_error_ response_value (float, optional) — If a floating
point error occurs when running a fit the fitter function will return a value for each
element of fpRespVal. Default is “‘1/1e100°

* calculate_covariance (bool, optional) — Is the covariance calculated.
Default False

See also:

modelGenerator () The model factory

outputting () The outputting functions

fitAlgs.fitAlg.FitAlg () General class for a method of fitting data
fitAlgs.fitSims.fitSim() General class for a method of simulating the fitting of data

data.Data () Dataimport class

xIsx_fitting_data

dataFitting.xlsx_ fitting data (fitting_data, label, participant, file_name_generator)
Saves the fitting data to an XLSX file

Parameters

» fitting_data (dict, optional) — Dictionary of details of the different fits,
including an ordered dictionary containing the parameter values tested, in the order
they were tested, and a list of the fit qualities of these parameters.

* label (basestring)— The label used to identify the fit in the file names
* participant (dict)— The participant data

* file_name_generator (function)— Creates a new file with the name <handle>
and the extension <extension>. It takes two string parameters: (handle, extension)
and returns one £ileName string

6.2.1.2 Classes

FitAlg([fit_sim, fit_measure, ...]) The abstract class for fitting data
FitSim([participant_choice_property, ...]) A class for fitting data by passing the participant data
through the model.

LengthError
Mode1Gen(model_name], parameters, Generates model class instances based on a model and
other_options]) a set of varying parameters
OrderError

LengthError

exception dataFitting.LengthError

22 Chapter 6. Documentation

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

pyHPDM Documentation, Release 0.9.9

OrderError

exception dataFitting.OrderError

6.2.1.3 Class Inheritance Diagram

Author Dominic Hunt

exception dataFitting.LengthError
Bases: exceptions.Exception

exception dataFitting.OrderError
Bases: exceptions.Exception

dataFitting.£fit_record (participant_fits, file_name_generator)
Returns the participant fits summary as a csv file

Parameters
* participant_fits (dict)— A summary of the recovered parameters

* file_name_generator (function) - Creates a new file with the name <handle>
and the extension <extension>. It takes two string parameters: (handle, extension)
and returns one £ileName string

dataFitting.log_fitting_ parameters (fir_info)
Records and outputs to the log the parameters associated with the fitting algorithms

Parameters £it_info (dict)— The details of the fitting

dataFitting.log_model_fitted_parameters (model_fit_variables, model_parameters,

fit_quality, participant_name)
Logs the model and task parameters that used as initial fitting conditions

Parameters

* model_fit_variables (dict) - The model parameters that have been fitted over
and varied.

* model_parameters (dict)— The model parameters for the fitted model
* fit_quality (float) - The value of goodness of fit
* participant_name (int or string)- The identifier for each participant

dataFitting.log_model_ fitting parameters (model, model_fit_variables,

model_other_args)
Logs the model and task parameters that used as initial fitting conditions

Parameters
* model (string)— The name of the model

* model_fit_variables (dict) — The model parameters that will be fitted over
and varied.

* model_other_args (dict) — The other parameters used in the model whose at-
tributes have been modified by the user

dataFitting.record_ fitting (fitting_data, label, participant, participant_model_variables, par-

ticipant_fits, file_name_generator, save_fitting_progress=False)
Records formatted versions of the fitting data

Parameters

6.2. dataFitting module

23

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

pyHPDM Documentation, Release 0.9.9

fitting_data (dict, optional) — Dictionary of details of the different fits,
including an ordered dictionary containing the parameter values tested, in the order
they were tested, and a list of the fit qualities of these parameters.

label (basestring) - The label used to identify the fit in the file names
participant (dict) - The participant data

participant_model_variables (dict of string) — A dictionary of
model settings whose values should vary from participant to participant based on the
values found in the imported participant data files. The key is the label given in the
participant data file, as a string, and the value is the associated label in the model, also
as a string.

participant_fits (defaultdict of 1ists)-— A dictionary to be filled with
the summary of the participant fits

file name_generator (function)— Creates a new file with the name <handle>
and the extension <extension>. It takes two string parameters: (handle, extension)
and returns one f£ileName string

save_fitting_progress (bool, optional) — Specifies if the results from
each iteration of the fitting process should be returned. Default False

Returns participant_fits — A dictionary to be filled with the summary of the previous and cur-
rent participant fits

Return type defaultdict of lists

dataFitting.record participant_f£fit (participant, part_name, model_data, model_name,

fitting_data, partModelVars, participantFits, file-
NameGen=None, pickleData=False, saveFitting-
Progress=Fualse, expData=None)

Record the data relevant to the participant fitting

Parameters

participant (dict) - The participant data

part_name (int or string)- The identifier for each participant
model_data (dict)— The data from the model

model_name (basestring)— The label given to the model

fitting_data (dict) — Dictionary of details of the different fits, including an or-
dered dictionary containing the parameter values tested, in the order they were tested,
and a list of the fit qualities of these parameters

partModelVars (dict of string)-— A dictionary of model settings whose val-
ues should vary from participant to participant based on the values found in the imported
participant data files. The key is the label given in the participant data file, as a string,
and the value is the associated label in the model, also as a string.

participantFits (defaultdict of 1lists)— A dictionary to be filled with
the summary of the participant fits

fileNameGen (function or None)- Creates a new file with the name <handle>
and the extension <extension>. It takes two string parameters: (handle, extension)
and returns one £ileName string. Default None

pickleData (bool, optional)-If true the data for each model, task and partic-
ipant is recorded. Default is False

saveFittingProgress (bool, optional)— Specifies if the results from each
iteration of the fitting process should be returned. Default False

expData (dict, optional)- The datafrom the task. Default None

24

Chapter 6. Documentation

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict

pyHPDM Documentation, Release 0.9.9

Returns participantFits — A dictionary to be filled with the summary of the previous and cur-
rent participant fits

Return type defaultdict of lists

See also:

outputting.pickleLog () records the picked data

dataFitting.run (data_folder=u'./", data_format=u’csv’, data_file_filter=None,

A framework for fitting models to data for tasks, along with recording the data associated with the fits.

data_file_terminal_ID=True, data_read_options=None, data_split_by=None,
data_group_by=None, data_extra_processing=None, model_name=u’QLearn’,
model_changing_properties=None, model_constant_properties=None, participan-
tID=u’Name’, participant_choices=u’Actions’, participant_rewards=u’Rewards’,

model_fit_value=u’ActionProb’, fit_subset=None, task_stimuli=None,
participant_action_options=None, fit_method=u’Evolutionary’,
fit_method_args=None, fit_measure=u’-loge’, fit_measure_args=None,

fit_extra_measures=None, participant_varying_model_parameters=None, la-
bel=None, save_fitting_progress=False, config_file=None, output_path=None,
pickle=False, boundary_excess_cost_function=None, min_log_level=u’INFO’,
numpy_error_level=u’log’, fit_float_error_response_value=1e-100, calcu-
late_covariance=False)

Parameters

data_folder (string or list of strings, optional) — The folder
where the data can be found. Default is the current folder.

data_format (string, optional)— The file type of the data, from mat, csv,
x1sx and pkl. Defaultis csv

data_file_filter (callable, string, list of strings or
None, optional) — A function to process the file names or a list of possible
prefixes as strings or a single string. Default None, no file names removed

data_file terminal_ ID (bool, optional) - Is there an ID number at the
end of the filename? If not then a more general search will be performed. Default True

data_read options(dict, optional)-The keyword arguments for the data
importing method chosen

data_split_by(string or list of strings, optional)-Ifmultiple
participant datasets are in one file sheet, this specifies the column or columns that can
distinguish and identify the rows for each participant. Default None

data_group_by (list of strings, optional) — A list of parts of file-
names that are repeated across participants, identifying all the files that should be
grouped together to form one participants data. The rest of the filename is assumed
to identify the participant. Default is None

data_extra_ processing(callable, optional)- A function that modifies
the dictionary of data read for each participant in such that it is appropriate for fitting.
Default is None

model_name (string, optional) — The name of the file where a
model.modelTemplate.Model class can be found. Default QLearn

model_changing_properties (dictionary with values of tuple
of two floats, optional)—Parameters are the options that you allow to vary
across model fits. Each model parameter is specified as a dict key. The value is a tu-
ple containing the upper and lower search bounds, e.g. alpha has the bounds (0, 1).
Default None

6.2. dataFitting module

25

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict

pyHPDM Documentation, Release 0.9.9

model_constant_properties (dictionary of float, string or
binary valued elements, optional) — These contain all the the model
options that define the version of the model being studied. Default None

participantID (basestring, optional)— The key (label) used to identify
each participant. Default Name

participant_choices (string, optional) — The participant data key of
their action choices. Default 'Actions'

participant_rewards (string, optional)-The participantdatakey of the
participant reward data. Default 'Rewards'"'

model_fit_value (string, optional) — The key to be compared in the
model data. Default 'ActionProb'

fit_subset (float ('Nan'), None, "rewarded", "unrewarded", "all"
or list of int, optional) — Describes which, if any, subset of trials will be used to evaluate
the performance of the model. This can either be described as a list of trial numbers or,
by passing - "al1l" for fitting all trials - f1oat ('Nan') or "unrewarded" for all
those trials whose feedback was f1oat ('"Nan') - "rewarded" for those who had
feedback that was not float ('Nan') Default None, which means all trials will be
used.

task_stimuli (list of strings or None, optional)- The keys con-
taining the observational parameters seen by the participant before taking a decision on
an action. Default None

participant_action_options (string or list of strings or
None or one element list with a list, optional) — If a string or
list of strings these are treated as dict keys where the valid actions for each trial can be
found. If None then all trials will use all available actions. If the list contains one list
then it will be treated as a list of valid actions for each trialstep. Default 'None'

fit_method (string, optional)— The fitting method to be used. The names
accepted are those of the modules in the folder fitAlgs containing a FitAlg class. Default
'evolutionary'

fit_method_args (dict, optional)— A dictionary of arguments specific to
the fitting method. Default None

fit_measure (string, optional)-The name of the function used to calculate
the quality of the fit. The value it returns provides the fitter with its fitting guide. Default
-loge

fit_measure_args (dict, optional) - The parameters used to initialise fit-
Measure and extraFitMeasures. Default None

fit_extra measures (list of strings, optional) — List of fit mea-
sures not used to fit the model, but to provide more information. Any arguments needed
for these measures should be placed in fitMeasureArgs. Default None

participant_varying model parameters (dict of string,
optional) — A dictionary of model settings whose values should vary from
participant to participant based on the values found in the imported participant data
files. The key is the label given in the participant data file, as a string, and the value is
the associated label in the model, also as a string. Default { }

label (string, optional) - The label for the data fitting. Default None will
mean no data is saved to files.

save_fitting progress (bool, optional) — Specifies if the results from
each iteration of the fitting process should be returned. Default False

config_file (string, optional) - The file name and path of a . yaml con-
figuration file. Overrides all other parameters if found. Default None

26

Chapter 6. Documentation

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool

pyHPDM Documentation, Release 0.9.9

* output_path (string, optional)- The path that will be used for the run out-
put. Default None

* pickle (bool, optional) — If true the data for each model, and participant is
recorded. Default is False

* boundary_ excess_cost_function (basestring or callable
returning a function, optional) — The function is used to calculate
the penalty for exceeding the boundaries. Default is boundFunc.scalarBound ()

* min_log_level (basestring, optional)- Defines the level of the log from
(DEBUG, INFO, WARNING, ERROR, CRITICAL). Default INFO

* numpy_error_level ({'log', 'raise'}) — Defines the response to numpy
errors. Default 10g. See numpy.seterr

e fit_float_error_ response_value (float, optional) — If a floating
point error occurs when running a fit the fitter function will return a value for each
element of fpRespVal. Default is “‘1/1e100°

* calculate_covariance (bool, optional) — Is the covariance calculated.
Default False

See also:

modelGenerator () The model factory
outputting () The outputting functions
fitAlgs.fitAlg.FitAlg () General class for a method of fitting data
fitAlgs.fitSims.fitSim() General class for a method of simulating the fitting of data
data.Data () Dataimport class

dataFitting.xlsx_ fitting data (fitting_data, label, participant, file_name_generator)
Saves the fitting data to an XLSX file

Parameters

 fitting data (dict, optional) — Dictionary of details of the different fits,
including an ordered dictionary containing the parameter values tested, in the order
they were tested, and a list of the fit qualities of these parameters.

* label (basestring)— The label used to identify the fit in the file names
* participant (dict)— The participant data

* file_name_generator (function)— Creates a new file with the name <handle>
and the extension <extension>. It takes two string parameters: (handle, extension)
and returns one £ileName string

6.3 data module

6.3.1 data Module

This module allows for the importing of participant data for use in fitting

Author Dominic Hunt

6.3.1.1 Functions

6.3. data module 27

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

pyHPDM Documentation, Release 0.9.9

sort_by last_number(dataFiles)

sort_by_last_number

data.sort_by_ last_number (dataFiles)

6.3.1.2 Classes

Dat a(participants[, participantID, choices, ...])

DimentionError

FileError

FileFilterError

FileTypeError

FoldersError

IDError

LengthError

ProcessingError

Data

class data.Data (participants, participantID=u’ID’, choices=u’actions’, feedbacks=u’feedbacks’,

stimuli=None, action_options=None, process_data_function=None)
Bases: 1ist

Methods Summary

extend(iterable) Combines two Data instances into one

from_csv([folder, file_name_filter, ...]) Import data from a folder full of .csv files, where
each file contains the information of one partici-
pant

from_mat([folder, file_name_filter, ...]) Import data from a folder full of .mat files, where
each file contains the information of one partici-
pant

from_pk1([folder, file_name_filter, ...]) Import data from a folder full of .pkl files, where
each file contains the information of one partici-
pant.

from_x1sx([folder, file_name_filter, ...]) Import data from a folder full of .xlsx files, where
each file contains the information of one partici-
pant

load_data([file_type, folders, ...]) Import data from a folder.

Methods Documentation
extend (iterable)
Combines two Data instances into one

Parameters iterable (Data instance or list of participant dicts)

classmethod from_csv (folder=u’./", file_name_filter=None, terminal_ID=True,
split_by=None, participantID=None, choices=u’actions’, feed-
backs=u’feedbacks’, stimuli=None, action_options=None,

group_by=None, extra_processing=None, csv_read_options=None)
Import data from a folder full of .csv files, where each file contains the information of one participant

28

Chapter 6. Documentation

https://docs.python.org/3/library/stdtypes.html#list

pyHPDM Documentation, Release 0.9.9

Parameters

e folder (string, optional)- The folder where the data can be found. Default
is the current folder.

e file name_filter (callable, string, list of strings or
None, optional) — A function to process the file names or a list of possible
prefixes as strings or a single string. Default None, no file names removed

e terminal_ID (bool, optional) — Is there an ID number at the end of the
filename? If not then a more general search will be performed. Default True

* split_by (string or list of strings, optional)- If multiple par-
ticipants datasets are in one file sheet, this specifies the column or columns that can
distinguish and identify the rows for each participant. Default None

* participantID (string, optional)-—The dictkey where the participant ID
can be found. Default None, which results in the file name being used.

* choices (string, optional)-The dictkey where the participant choices can
be found. Default 'actions'

» feedbacks (string, optional)- The dict key where the feedbacks the par-
ticipant received can be found. Default ' feedbacks'

e stimuli (string or list of strings, optional) — The dict keys
where the stimulus cues for each trial can be found. Default ' None''

* action_options (string or list of strings or None or one
element list with a list, optional) — If a string or list of strings
these are treated as dict keys where the valid actions for each trial can be found. If
None then all trials will use all available actions. If the list contains one list then it
will be treated as a list of valid actions for each trialstep. Default ' None''

* group_by (1ist of strings, optional)-— A listof parts of filenames that
are repeated across participants, identifying all the files that should be grouped to-
gether to form one participants data. The rest of the filename is assumed to identify
the participant. Default is None

* extra_processing (callable, optional)— A function that modifies the
dictionary of data read for each participant in such that it is appropriate for fitting.
Default is None

* csv_read_options (dict, optional) — The keyword arguments for pan-
das.read_csv. Default {}

Returns Data

Return type Data class instance

See also:

pandas

.read_csv ()

classmethod from_mat (folder=u’/’, file_name_filter=None, terminal_ID=True, par-

ticipantID=None, choices=u’actions’, feedbacks=u’feedbacks’,
stimuli=None, action_options=None, group_by=None, ex-
tra_processing=None)

Import data from a folder full of .mat files, where each file contains the information of one participant

Parameters

e folder (string, optional)- The folder where the data can be found. Default
is the current folder.

e file_name_ filter (callable, string, list of strings or
None, optional) — A function to process the file names or a list of possible
prefixes as strings or a single string. Default None, no file names removed

6.3. data module

29

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None

pyHPDM Documentation, Release 0.9.9

e terminal_1ID (bool, optional) — Is there an ID number at the end of the
filename? If not then a more general search will be performed. Default True

* participantID (string, optional)-—The dictkey where the participant ID
can be found. Default None, which results in the file name being used.

* choices (string, optional)- The dictkey where the participant choices can
be found. Default 'actions'

* feedbacks (string, optional)— The dict key where the feedbacks the par-
ticipant received can be found. Default ' feedbacks'

e stimuli (string or list of strings, optional) — The dict keys
where the stimulus cues for each trial can be found. Default 'None''

* action_options (string or list of strings or None or one
element list with a list, optional) — If a string or list of strings
these are treated as dict keys where the valid actions for each trial can be found. If
None then all trials will use all available actions. If the list contains one list then it
will be treated as a list of valid actions for each trialstep. Default ' None''

* group_by (1ist of strings, optional)-— A listof parts of filenames that
are repeated across participants, identifying all the files that should be grouped to-
gether to form one participants data. The rest of the filename is assumed to identify
the participant. Default is None

* extra_processing (callable, optional)— A function that modifies the
dictionary of data read for each participant in such that it is appropriate for fitting.
Default is None

Returns Data

Return type Data class instance
See also:
scipy.io.loadmat ()

classmethod from pkl (folder=u’./’, file_name_filter=None, terminal_ID=True, par-
ticipantID=None, choices=u’actions’, feedbacks=u feedbacks’,
stimuli=None, action_options=None, group_by=None, ex-

tra_processing=None)
Import data from a folder full of .pkl files, where each file contains the information of one participant.

This will principally be used to import data stored by task simulations
Parameters

e folder (string, optional)- The folder where the data can be found. Default
is the current folder.

e file name_ filter (callable, string, 1list of strings or
None, optional) — A function to process the file names or a list of possible
prefixes as strings or a single string. Default None, no file names removed

* terminal_ID (bool, optional) — Is there an ID number at the end of the
filename? If not then a more general search will be performed. Default True

* participantID (string, optional)- The dictkey where the participant ID
can be found. Default None, which results in the file name being used.

* choices (string, optional)- The dictkey where the participant choices can
be found. Default 'actions’

* feedbacks (string, optional)- The dict key where the feedbacks the par-
ticipant received can be found. Default ' feedbacks"'

e stimuli (string or list of strings, optional) — The dict keys
where the stimulus cues for each trial can be found. Default ' None''

30 Chapter 6. Documentation

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool

pyHPDM Documentation, Release 0.9.9

* action_options (string or list of strings or None or one
element list with a list, optional) — If a string or list of strings
these are treated as dict keys where the valid actions for each trial can be found. If
None then all trials will use all available actions. If the list contains one list then it
will be treated as a list of valid actions for each trialstep. Default ' None'

e group_by (1ist of strings, optional)-— A listof parts of filenames that
are repeated across participants, identifying all the files that should be grouped to-
gether to form one participants data. The rest of the filename is assumed to identify
the participant. Default is None

* extra_processing (callable, optional)— A function that modifies the
dictionary of data read for each participant in such that it is appropriate for fitting.
Default is None

Returns Data

Return type Data class instance

classmethod from xlsx (folder=u’./’, file_name_filter=None, terminal_ID=True,
split_by=None, participantID=None, choices=u’actions’,
feedbacks=u’feedbacks’, stimuli=None, ac-

tion_options=None, group_by=None, extra_processing=None,
xlsx_read_options=None)
Import data from a folder full of .xIsx files, where each file contains the information of one participant

Parameters

e folder (string, optional)- The folder where the data can be found. Default
is the current folder.

e file name_ filter (callable, string, 1list of strings or
None, optional) — A function to process the file names or a list of possible
prefixes as strings or a single string. Default None, no file names removed

e terminal_ID (bool, optional) — Is there an ID number at the end of the
filename? If not then a more general search will be performed. Default True

e split_by (string or list of strings, optional)— If multiple par-
ticipants datasets are in one file sheet, this specifies the column or columns that can
distinguish and identify the rows for each participant. Default None

e participantID (string, optional)- The dictkey where the participant ID
can be found. Default None, which results in the file name being used.

* choices (string, optional)- The dict key where the participant choices can
be found. Default 'actions'

* feedbacks (string, optional)- The dict key where the feedbacks the par-
ticipant received can be found. Default ' feedbacks'

e stimuli (string or list of strings, optional) — The dict keys
where the stimulus cues for each trial can be found. Default 'None''

* action_options (string or list of strings or None or one
element list with a list, optional) — If a string or list of strings
these are treated as dict keys where the valid actions for each trial can be found. If
None then all trials will use all available actions. If the list contains one list then it
will be treated as a list of valid actions for each trialstep. Default ' None'

e group_by (1ist of strings, optional)- A listof parts of filenames that
are repeated across participants, identifying all the files that should be grouped to-
gether to form one participants data. The rest of the filename is assumed to identify
the participant. Default is None

6.3. data module 31

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None

pyHPDM Documentation, Release 0.9.9

* extra_processing (callable, optional)— A function that modifies the
dictionary of data read for each participant in such that it is appropriate for fitting.
Default is None

* xlsx_read options (dict, optional) - The keyword arguments for pan-
das.read_excel

Returns Data

Return type Data class instance
See also:
pandas.read_excel ()

classmethod load_data (file_type=u’'csv’, folders=u’./’, file_name_filter=None, ter-
minal_ID=True, split_by=None, participantID=None,
choices=u’actions’, feedbacks=u’feedbacks’, stimuli=None,
action_options=None, group_by=None, extra_processing=None,

data_read_options=None)
Import data from a folder. This is a wrapper function for the other import methods

Parameters

e file type (string, optional) - The file type of the data, from mat, csv,
x1sx and pk1l. Defaultis csv

e folders (string or list of strings, optional) — The folder or
folders where the data can be found. Default is the current folder.

e file_name_filter (callable, string, list of strings or
None, optional) — A function to process the file names or a list of possible
prefixes as strings or a single string. Default None, no file names removed

e terminal_ID (bool, optional) — Is there an ID number at the end of the
filename? If not then a more general search will be performed. Default True

* split_by (string or list of strings, optional) - If multiple par-
ticipant datasets are in one file sheet, this specifies the column or columns that can
distinguish and identify the rows for each participant. Default None

e participantID (string, optional)-—The dictkey where the participant ID
can be found. Default None, which results in the file name being used.

* choices (string, optional)- The dictkey where the participant choices can
be found. Default 'actions'

* feedbacks (string, optional)— The dict key where the feedbacks the par-
ticipant received can be found. Default ' feedbacks'

e stimuli (string or list of strings, optional) — The dict keys
where the stimulus cues for each trial can be found. Default 'None''

* action_options (string or list of strings or None or one
element list with a list, optional) — If a string or list of strings
these are treated as dict keys where the valid actions for each trial can be found. If
None then all trials will use all available actions. If the list contains one list then it
will be treated as a list of valid actions for each trialstep. Default ' None'

* group_by (1ist of strings, optional)-— A listof parts of filenames that
are repeated across participants, identifying all the files that should be grouped to-
gether to form one participants data. The rest of the filename is assumed to identify
the participant. Default is None

* extra_processing (callable, optional)— A function that modifies the
dictionary of data read for each participant in such that it is appropriate for fitting.
Default is None

32 Chapter 6. Documentation

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None

pyHPDM Documentation, Release 0.9.9

* data_read_options (dict,

data importing method chosen

Returns Data

Return type Data class instance

DimentionError

exception data.

FileError

exception data.

FileFilterError

exception data.

FileTypeError

exception data.

FoldersError

exception data.

IDError

exception data.

LengthError

exception data.

ProcessingError

exception data.

DimentionError

FileError

FileFilterError

FileTypeError

FoldersError

IDError

LengthError

ProcessingError

6.3.1.3 Class Inheritance Diagram

optional) — The keyword arguments for the

This module allows for the importing of participant data for use in fitting

Author Dominic Hunt

class data.Data (participants, participantlD=u’ID’, choices=u’actions’, feedbacks=u’feedbacks’,
stimuli=None, action_options=None, process_data_function=None)

Bases: 1ist

extend (iterable)
Combines two Data instances into one

6.3. data module

33

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list

pyHPDM Documentation, Release 0.9.9

Parameters iterable (Data instance or list of participant dicts)

classmethod from_csv (folder=u’./’, file_name_filter=None, terminal_ID=True,

Import data from a folder full of .csv files, where each file contains the information of one participant

split_by=None, participantID=None, choices=u’actions’, feed-
backs=u’feedbacks’, stimuli=None, action_options=None,
group_by=None, extra_processing=None, csv_read_options=None)

Parameters

folder (string, optional)- The folder where the data can be found. Default
is the current folder.

file name_filter (callable, string, list of strings or
None, optional) — A function to process the file names or a list of possible
prefixes as strings or a single string. Default None, no file names removed

terminal_1ID (bool, optional) — Is there an ID number at the end of the
filename? If not then a more general search will be performed. Default True

split_by (string or list of strings, optional) - If multiple par-
ticipants datasets are in one file sheet, this specifies the column or columns that can
distinguish and identify the rows for each participant. Default None

participantID (string, optional)-—The dictkey where the participant ID
can be found. Default None, which results in the file name being used.

choices (string, optional)- The dict key where the participant choices can
be found. Default 'actions’

feedbacks (string, optional) - The dict key where the feedbacks the par-
ticipant received can be found. Default ' feedbacks"'

stimuli (string or 1list of strings, optional) — The dict keys
where the stimulus cues for each trial can be found. Default ' None''

action_options (string or list of strings or None or one
element list with a list, optional) — If a string or list of strings
these are treated as dict keys where the valid actions for each trial can be found. If
None then all trials will use all available actions. If the list contains one list then it
will be treated as a list of valid actions for each trialstep. Default ' None'

group_by (list of strings, optional)— A listof parts of filenames that
are repeated across participants, identifying all the files that should be grouped to-
gether to form one participants data. The rest of the filename is assumed to identify
the participant. Default is None

extra_processing (callable, optional) — A function that modifies the
dictionary of data read for each participant in such that it is appropriate for fitting.
Default is None

csv_read options (dict, optional) — The keyword arguments for pan-
das.read_csv. Default {}

Returns Data

Return type Data class instance

See also:

pandas.read_csv ()

classmethod from mat (folder=u’./’, file_name_filter=None, terminal_ID=True, par-

Import data from a folder full of .mat files, where each file contains the information of one participant

ticipantID=None, choices=u’actions’, feedbacks=u’feedbacks’,
stimuli=None, action_options=None, group_by=None, ex-
tra_processing=None)

34

Chapter 6. Documentation

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict

pyHPDM Documentation, Release 0.9.9

Parameters

e folder (string, optional)- The folder where the data can be found. Default
is the current folder.

e file name_filter (callable, string, list of strings or
None, optional) — A function to process the file names or a list of possible
prefixes as strings or a single string. Default None, no file names removed

e terminal_ID (bool, optional) — Is there an ID number at the end of the
filename? If not then a more general search will be performed. Default True

* participantID (string, optional)- The dictkey where the participant ID
can be found. Default None, which results in the file name being used.

* choices (string, optional)- The dictkey where the participant choices can
be found. Default 'actions'

* feedbacks (string, optional)- The dict key where the feedbacks the par-
ticipant received can be found. Default ' feedbacks'

e stimuli (string or list of strings, optional) — The dict keys
where the stimulus cues for each trial can be found. Default 'None'

* action_options (string or list of strings or None or one
element list with a list, optional) — If a string or list of strings
these are treated as dict keys where the valid actions for each trial can be found. If
None then all trials will use all available actions. If the list contains one list then it
will be treated as a list of valid actions for each trialstep. Default ' None'

e group_by (1ist of strings, optional)- A listof parts of filenames that
are repeated across participants, identifying all the files that should be grouped to-
gether to form one participants data. The rest of the filename is assumed to identify
the participant. Default is None

* extra_processing (callable, optional) — A function that modifies the
dictionary of data read for each participant in such that it is appropriate for fitting.
Default is None

Returns Data

Return type Data class instance
See also:
scipy.io.loadmat ()

classmethod from pkl (folder=u’/’, file_name_filter=None, terminal_ID=True, par-
ticipantID=None, choices=u’actions’, feedbacks=u’feedbacks’,
stimuli=None, action_options=None, group_by=None, ex-

tra_processing=None)
Import data from a folder full of .pkl files, where each file contains the information of one participant.

This will principally be used to import data stored by task simulations
Parameters

e folder (string, optional)- The folder where the data can be found. Default
is the current folder.

e file_name_ filter (callable, string, list of strings or
None, optional) — A function to process the file names or a list of possible
prefixes as strings or a single string. Default None, no file names removed

e terminal_1ID (bool, optional) — Is there an ID number at the end of the
filename? If not then a more general search will be performed. Default True

e participantID (string, optional)-—The dictkey where the participant ID
can be found. Default None, which results in the file name being used.

6.3. data module 35

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool

pyHPDM Documentation, Release 0.9.9

* choices (string, optional)-The dictkey where the participant choices can
be found. Default 'actions'

» feedbacks (string, optional)- The dict key where the feedbacks the par-
ticipant received can be found. Default ' feedbacks'

e stimuli (string or list of strings, optional) — The dict keys
where the stimulus cues for each trial can be found. Default 'None''

* action_options (string or list of strings or None or one
element list with a list, optional) — If a string or list of strings
these are treated as dict keys where the valid actions for each trial can be found. If
None then all trials will use all available actions. If the list contains one list then it
will be treated as a list of valid actions for each trialstep. Default ' None''

* group_by (1ist of strings, optional)-— A listof parts of filenames that
are repeated across participants, identifying all the files that should be grouped to-
gether to form one participants data. The rest of the filename is assumed to identify
the participant. Default is None

* extra_processing (callable, optional)— A function that modifies the
dictionary of data read for each participant in such that it is appropriate for fitting.
Default is None

Returns Data

Return type Data class instance

classmethod from_ x1lsx (folder=u’./’, file_name_filter=None, terminal_ID=True,
split_by=None, participantID=None, choices=u’actions’,
feedbacks=u’feedbacks’, stimuli=None, ac-

tion_options=None, group_by=None, extra_processing=None,

xlsx_read_options=None)
Import data from a folder full of .xIsx files, where each file contains the information of one participant

Parameters

e folder (string, optional)- The folder where the data can be found. Default
is the current folder.

e file_name_ filter (callable, string, list of strings or
None, optional) — A function to process the file names or a list of possible
prefixes as strings or a single string. Default None, no file names removed

e terminal_1ID (bool, optional) — Is there an ID number at the end of the
filename? If not then a more general search will be performed. Default True

* split_by (string or list of strings, optional)— If multiple par-
ticipants datasets are in one file sheet, this specifies the column or columns that can
distinguish and identify the rows for each participant. Default None

* participantID (string, optional)-The dictkey where the participant ID
can be found. Default None, which results in the file name being used.

* choices (string, optional)-The dict key where the participant choices can
be found. Default 'actions’

* feedbacks (string, optional)— The dict key where the feedbacks the par-
ticipant received can be found. Default ' feedbacks'

* stimuli (string or list of strings, optional) — The dict keys
where the stimulus cues for each trial can be found. Default 'None''

* action_options (string or list of strings or None or one
element list with a list, optional) — If a string or list of strings
these are treated as dict keys where the valid actions for each trial can be found. If

36 Chapter 6. Documentation

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None

pyHPDM Documentation, Release 0.9.9

None then all trials will use all available actions. If the list contains one list then it
will be treated as a list of valid actions for each trialstep. Default ' None'

group_by (list of strings, optional)-— A listof parts of filenames that
are repeated across participants, identifying all the files that should be grouped to-
gether to form one participants data. The rest of the filename is assumed to identify
the participant. Default is None

extra_processing (callable, optional)— A function that modifies the
dictionary of data read for each participant in such that it is appropriate for fitting.
Default is None

x1lsx_read_options (dict, optional)— The keyword arguments for pan-
das.read_excel

Returns Data

Return type Data class instance

See also:

pandas.read_excel ()

classmethod load data (file_type=u’csv’, folders=u’/’, file_name_filter=None, ter-

minal_ID=True, split_by=None, participantID=None,
choices=u’actions’, feedbacks=u’feedbacks’, stimuli=None,
action_options=None, group_by=None, extra_processing=None,
data_read_options=None)

Import data from a folder. This is a wrapper function for the other import methods

Parameters

file_type (string, optional)— The file type of the data, from mat, csv,
x1sx and pkl. Defaultis csv

folders (string or list of strings, optional) — The folder or
folders where the data can be found. Default is the current folder.

file name_filter (callable, string, 1list of strings or
None, optional) — A function to process the file names or a list of possible
prefixes as strings or a single string. Default None, no file names removed

terminal_ID (bool, optional) — Is there an ID number at the end of the
filename? If not then a more general search will be performed. Default True

split_by (string or list of strings, optional) - If multiple par-
ticipant datasets are in one file sheet, this specifies the column or columns that can
distinguish and identify the rows for each participant. Default None

participantID (string, optional)-The dictkey where the participant ID
can be found. Default None, which results in the file name being used.

choices (string, optional)- The dictkey where the participant choices can
be found. Default 'actions'

feedbacks (string, optional) - The dict key where the feedbacks the par-
ticipant received can be found. Default ' feedbacks'

stimuli (string or list of strings, optional) — The dict keys
where the stimulus cues for each trial can be found. Default 'None''

action_options (string or list of strings or None or one
element list with a list, optional) — If a string or list of strings
these are treated as dict keys where the valid actions for each trial can be found. If
None then all trials will use all available actions. If the list contains one list then it
will be treated as a list of valid actions for each trialstep. Default ' None'

6.3. data module

37

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None

pyHPDM Documentation, Release 0.9.9

e group_by (1ist of strings, optional)-— A listof parts of filenames that
are repeated across participants, identifying all the files that should be grouped to-
gether to form one participants data. The rest of the filename is assumed to identify
the participant. Default is None

* extra_processing (callable, optional)— A function that modifies the
dictionary of data read for each participant in such that it is appropriate for fitting.

Default is None

* data_read options (dict, optional) — The keyword arguments for the
data importing method chosen

Returns Data

Return type Data class instance

exception data.DimentionError
Bases: exceptions.Exception

exception data.FileError
Bases: exceptions.Exception

exception data.FileFilterError
Bases: exceptions.Exception

exception data.FileTypeError
Bases: exceptions.Exception

exception data.FoldersError
Bases: exceptions.Exception

exception data.IDError
Bases: exceptions.Exception

exception data.LengthError
Bases: exceptions.Exception

exception data.ProcessingError
Bases: exceptions.Exception

data.sort_by_last_number (dataFiles)

6.4 taskGenerator module

6.4.1 taskGenerator Module

Author Dominic Hunt

6.4.1.1 Classes

Task()

The abstract tasks class from which all others inherit

TaskGenerat ion(task_name[, parameters, ..

D Generates task class instances based on a task and a

set of varying parameters

TaskGeneration

class taskGenerator.TaskGeneration (task_name, parameters=None, other_options=None)

Bases: object

Generates task class instances based on a task and a set of varying parameters

Parameters

38

Chapter 6. Documentation

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#object

pyHPDM Documentation, Release 0.9.9

* task_name (string)— The name of the file where a tasks.taskTemplate.Task class
can be found

* parameters (dictionary of floats or lists of floats)— Parame-
ters are the options that you are or are likely to change across task instances. When a
parameter contains a list, an instance of the task will be created for every combination
of this parameter with all the others. Default None

* other_options (dictionary of float, string or binary valued
elements)— These contain all the the task options that describe the task being studied
but do not vary across task instances. Default None

Methods Summary

iter_task_ID() Yields the tasks IDs.
new_task(task_number) Produces the next tasks instance
next() Produces the next task instance for the iterator

Methods Documentation
iter task_ID()
Yields the tasks IDs. To be used with self.new_task(expID) to receive the next tasks instance
Returns explID — The ID number that refers to the next tasks parameter combination.
Return type int

new_task (task_number)
Produces the next tasks instance

Parameters task_number (int)— The number of the tasks instance to be initialised
Returns instance
Return type tasks.taskTemplate.Task instance

next ()
Produces the next task instance for the iterator

Returns instance

Return type tasks.taskTemplate.Task instance

6.4.1.2 Class Inheritance Diagram

Author Dominic Hunt

class taskGenerator.TaskGeneration (task_name, parameters=None, other_options=None)
Bases: object

Generates task class instances based on a task and a set of varying parameters
Parameters

* task_name (string) — The name of the file where a tasks.taskTemplate.Task class
can be found

* parameters (dictionary of floats or lists of floats)— Parame-
ters are the options that you are or are likely to change across task instances. When a
parameter contains a list, an instance of the task will be created for every combination
of this parameter with all the others. Default None

6.4. taskGenerator module 39

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object

pyHPDM Documentation, Release 0.9.9

* other_options(dictionary of float, string or binary valued
elements)— These contain all the the task options that describe the task being studied
but do not vary across task instances. Default None

iter task_ID ()
Yields the tasks IDs. To be used with self.new_task(expID) to receive the next tasks instance

Returns explID — The ID number that refers to the next tasks parameter combination.
Return type int

new_task (fask_number)
Produces the next tasks instance

Parameters task_number (int)— The number of the tasks instance to be initialised
Returns instance
Return type tasks.taskTemplate.Task instance

next ()
Produces the next task instance for the iterator

Returns instance

Return type tasks.taskTemplate.Task instance

6.5 tasks package

6.5.1 tasks Package
6.5.2 Submodules

6.5.2.1 tasks.balltask module

pyhpdm version of the balltask task TODO: describe tasks

class tasks.balltask.Balltask (nbr_of _bags=6, bag_colors=[u’red’, u’green’, u’blue’],

balls_per_bag=3)
Bases: tasks.taskTemplate. Task

feedback ()
Responds to the action from the participant balltask has no rewards so we return None

next ()
Produces the next stimulus for the iterator

Returns
e stimulus (None)

e nextValidActions ((0, 1, 2) representing red, green, blue in default case) — but can be
many colors. it’s assumed this always goes in same order left to right as bag_colors
parameter

Raises StopIteration

proceed ()
Updates the task after feedback

receiveAction (action)
Receives the next action from the participant

Parameters action (int or string)- The action taken by the model

40 Chapter 6. Documentation

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#StopIteration
https://docs.python.org/3/library/functions.html#int

pyHPDM Documentation, Release 0.9.9

returnTaskState ()
Returns all the relevant data for this task run

Returns history — A dictionary containing the class parameters as well as the other useful
data

Return type dictionary

storeState ()
Stores the state of all the important variables so that they can be output later

class tasks.balltask.RewardBalltaskDirect (**kwargs)
Bases: model.modelTemplate.Rewards

Processes the reward for models expecting just the reward
processFeedback (feedback, lastAction, stimuli)
Returns
Return type modelFeedback

class tasks.balltask.StimulusBalltaskSimple (**kwargs)
Bases: model.modelTemplate.Stimulus

Processes the stimulus cues for models expecting just the event

processStimulus (observation)
Processes the decks stimuli for models expecting just the event

Returns
o stimuliPresent (inf or list of int) — The elements present of the stimulus

* stimuliActivity (float or list of float) — The activity of each of the elements

6.5.2.2 tasks.basic module

Author Dominic Hunt
Note A simple example of a task class with all the necessary components

class tasks.basic.Basic (trials=100)
Bases: tasks.taskTemplate.Task

An example of a task with all the necessary components, but nothing changing
Parameters trials (int)— The number of trials in the task

Name
The name of the class used when recording what has been used.

Type string

feedback ()
Responds to the action from the participant

next ()
the task class is an iterator [link to iterator documentation] this function produces the next stimulus for
the task iterator

Returns
e stimulus (None)

* nextValidActions (Tuple of ints or None) — The list of valid actions that the model
can respond with. Set to (0,1), as they never vary.

Raises StopIteration

6.5. tasks package 41

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#StopIteration

pyHPDM Documentation, Release 0.9.9

proceed ()
Updates the task after feedback

receiveAction (action)
Receives the next action from the participant

Parameters action (int or string)- The action taken by the model

returnTaskState ()
Returns all the relevant data for this task run

Returns results — A dictionary containing the class parameters as well as the other useful
data

Return type dictionary

storeState ()
Stores the state of all the important variables so that they can be output later

class tasks.basic.RewardBasicDirect (**kwargs)
Bases: model.modelTemplate.Rewards

Processes the reward for models expecting just the reward
processFeedback (feedback, lastAction, stimuli)
Returns
Return type modelFeedback

class tasks.basic.StimulusBasicSimple (**kwargs)
Bases: model.modelTemplate.Stimulus

Processes the stimulus cues for models expecting just the event

processStimulus (observation)
Processes the decks stimuli for models expecting just the event

Returns
« stimuliPresent (int or list of int) — The elements present of the stimulus

* stimuliActivity (float or list of float) — The activity of each of the elements

6.5.2.3 tasks.beads module

Author Dominic Hunt

Reference Jumping to conclusions: a network model predicts schizophrenic patients’ performance
on a probabilistic reasoning task. Moore, S. C., & Sellen, J. L. (2006). Cognitive, Affective &
Behavioral Neuroscience, 6(4), 261-9. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/
17458441

class tasks.beads.Beads (N=None, beadSequence=[1,1,1,0,1,1,1,1,0,1,0,0,0, 1,0, 0, 0, 0,
1, 0])
Bases: tasks.taskTemplate. Task
Based on the Moore & Sellen Beads task

Many methods are inherited from the tasks.taskTemplate.Task class. Refer to its documentation for missing
methods.

Name
The name of the class used when recording what has been used.

Type string

Parameters

* N(int, optional)- Number of beads that could potentially be shown

42 Chapter 6. Documentation

https://docs.python.org/3/library/functions.html#int
http://www.ncbi.nlm.nih.gov/pubmed/17458441
http://www.ncbi.nlm.nih.gov/pubmed/17458441
https://docs.python.org/3/library/functions.html#int

pyHPDM Documentation, Release 0.9.9

* beadSequence (list or array of {0,1}, optional)-The sequence of
beads to be shown. Bead sequences can also be embedded in the code and then referred
to by name. The only current one is MooreSellen, the default sequence.

next ()
Produces the next bead for the iterator
Returns
e bead ({0,1))

* nextValidActions (Tuple of ints or None) — The list of valid actions that the model
can respond with. Set to (0,1), as they never vary.

Raises StopIteration

receiveAction (action)
Receives the next action from the participant

Parameters action (int or string)-— The action taken by the model

returnTaskState ()
Returns all the relevant data for this task run

Returns results — A dictionary containing the class parameters as well as the other useful
data

Return type dictionary

storeState ()
Stores the state of all the important variables so that they can be output later

class tasks.beads.RewardBeadDirect (**kwargs)
Bases: model.modelTemplate.Rewards

Processes the beads reward for models expecting just the reward
processFeedback (feedback, lastAction, stimuli)

Returns

Return type modelFeedback

class tasks.beads.StimulusBeadDirect (**kwargs)
Bases: model.modelTemplate.Stimulus

Processes the beads stimuli for models expecting just the event

processStimulus (observation)
Processes the decks stimuli for models expecting just the event

Returns
* stimuliPresent (int or list of int)
o stimuliActivity (float or list of float)

class tasks.beads.StimulusBeadDualDirect (**kwargs)
Bases: model.modelTemplate.Stimulus

Processes the beads stimuli for models expecting a tuple of [event, 1-event]

processStimulus (observation)
Processes the decks stimuli for models expecting just the event

Returns
* stimuliPresent (int or list of int) — The elements present of the stimulus

« stimuliActivity (float or list of float) — The activity of each of the elements

6.5. tasks package 43

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/exceptions.html#StopIteration
https://docs.python.org/3/library/functions.html#int

pyHPDM Documentation, Release 0.9.9

class tasks.beads.StimulusBeadDualInfo (**kwargs)
Bases: model.modelTemplate.Stimulus

Processes the beads stimuli for models expecting the reward information from two possible actions

Parameters oneProb (floatin [0, 1]) — The probability of a 1 from the first jar. This is also
the probability of a 0 from the second jar. event_info is calculated as oneProb+event
+ (l-oneProb) * (1-event)

oneProb = [0, 1]

processStimulus (observation)
Processes the decks stimuli for models expecting just the event

Returns
« stimuliPresent (int or list of int) — The elements present of the stimulus
« stimuliActivity (float or list of float) — The activity of each of the elements

tasks.beads.generateSequence (numBeads, oneProb, switchProb)
Designed to generate a sequence of beads with a probability of switching jar at any time.

Parameters
* numBeads (int)— The number of beads in the sequence

* oneProb (floatin [0, 1]) — The probability of a 1 from the first jar. This is also the
probability of a 0 from the second jar.

* switchProb (floatin [0, 1]) — The probability that the drawn beads change the jar
they are being drawn from

Returns sequence — The generated sequence of beads

Return type listof {0, 1}

6.5.2.4 tasks.decks module

Author Dominic Hunt

Reference Regulatory fit effects in a choice task Worthy, D. a, Maddox, W. T., & Markman, A. B.
(2007). Psychonomic Bulletin & Review, 14(6), 1125-32. Retrieved from http://www.ncbi.nlm.
nih.gov/pubmed/18229485

class tasks.decks.Decks (draws=None, decks=array([[2, 2, 1, 1,2, 1, 1, 3,2,6,2,8, 1,6, 2, 1,
1,58 5,10, 10,8, 3,10,7,10,8, 3,4,9,10, 3,6, 3,5, 10, 10, 10, 7, 3,
8,5 86,9,4,4,4,10,6,4, 10, 3, 10, 5, 10, 3, 10, 10, 5, 4, 6, 10, 7, 7,
10,10, 10,3,1,4,1,3,1,7,1,3,1,8],[7 10,5, 10, 6, 6, 10, 10, 10,
84,8 10 4,9, 10,8, 6, 10, 10, 10,4, 7, 10, 5, 10, 4, 10, 10, 9, 2, 9, 8,
10,7,7,1,10,2,6,4,7,2,1,1,1,7,10,1,4,2,1,1,1,4,1,4,1, 1, 1,
1,3 1,4 1,1,1,51,1,1,7,2,1,2, 1,4, 1,4, 1]]), discard=False)

Bases: tasks.taskTemplate.Task

Based on the Worthy&Maddox 2007 paper “Regulatory fit effects in a choice task.

Many methods are inherited from the tasks.taskTemplate.Task class. Refer to its documentation for missing

methods.

Name
The name of the class used when recording what has been used.

Type string

Parameters
* draws (int, optional)- Number of cards drawn by the participant

e decks (array of floats, optional)- The decks of cards

44 Chapter 6. Documentation

https://docs.python.org/3/library/functions.html#int
http://www.ncbi.nlm.nih.gov/pubmed/18229485
http://www.ncbi.nlm.nih.gov/pubmed/18229485
https://docs.python.org/3/library/functions.html#int

pyHPDM Documentation, Release 0.9.9

* discard (bool)— Defines if you discard the card not chosen or if you keep it.
feedback ()
Responds to the action from the participant

next ()
Produces the next stimulus for the iterator

Returns
* stimulus (None)

* nextValidActions (Tuple of ints or None) — The list of valid actions that the model
can respond with. Set to (0,1), as they never vary.

Raises StopIteration

proceed ()
Updates the task after feedback

receiveAction (action)

Receives the next action from the participant

Parameters action (int or string)- The action taken by the model

returnTaskState ()
Returns all the relevant data for this task run

Returns results — A dictionary containing the class parameters as well as the other useful
data

Return type dictionary

storeState ()
Stores the state of all the important variables so that they can be output later

class tasks.decks.RewardDecksAllInfo (**kwargs)
Bases: model.modelTemplate.Rewards

Processes the decks reward for models expecting the reward information from all possible actions
Parameters
* maxRewardVal (int)— The highest value a reward can have
e minRewardVal (int)— The lowest value a reward can have

* number_actions (int)— The number of actions the participant can perform. As-
sumes the lowest valued action is 0

Returns deckRew — The function expects to be passed a tuple containing the reward and the

last action. The reward that is a float and action is {0,1}. The function returns a array of
length (maxRewardVal-minRewardVal)*number_actions.

Return type function

Name
The identifier of the function

Type string

Examples

>>> rew = RewardDecksAllInfo (maxRewardVal=10, minRewardval=1,
>>> rew.processFeedback (6, 0, 1)

array([(1., 1., 1., 1., 1., 2., 1., 1., 1., 1., 1
1., 1.1)

number_actions=2)

., 1., 1., 1., 1., 1., 1., 1.

o

(continues on next page)

6.5. tasks package 45

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#StopIteration
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

pyHPDM Documentation, Release 0.9.9

(continued from previous page)

>>> rew.processFeedback (6, 1, 1)
array(f1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 2., 1., 1.,
—1l., 1.1)

maxRewardval = 10
minRewardvVal = 1
number_actions = 2
processFeedback (reward, action, stimuli)
Returns
Return type modelFeedback

class tasks.decks.RewardDecksDualInfo (**kwargs)
Bases: model.modelTemplate.Rewards

Processes the decks reward for models expecting the reward information from two possible actions.
epsilon =1
maxRewardval = 10
processFeedback (reward, action, stimuli)
Returns
Return type modelFeedback

class tasks.decks.RewardDecksDualInfoLogistic (**kwargs)
Bases: model.modelTemplate.Rewards

Processes the decks rewards for models expecting the reward information from two possible actions.
epsilon = 0.3
maxRewardval = 10
minRewardvVal =1
processFeedback (reward, action, stimuli)
Returns
Return type modelFeedback

class tasks.decks.RewardDecksLinear (**kwargs)
Bases: model.modelTemplate.Rewards

Processes the decks reward for models expecting just the reward
processFeedback (feedback, lastAction, stimuli)

Returns

Return type modelFeedback

class tasks.decks.RewardDecksNormalised (**kwargs)
Bases: model.modelTemplate.Rewards

Processes the decks reward for models expecting just the reward, but in range [0,1]

Parameters maxReward (int, optional)-—The highest value a reward can have. Default
10

See also:
model.OpAL

maxReward = 10

46 Chapter 6. Documentation

https://docs.python.org/3/library/functions.html#int

pyHPDM Documentation, Release 0.9.9

processFeedback (feedback, lastAction, stimuli)
Returns
Return type modelFeedback

class tasks.decks.RewardDecksPhi (**kwargs)
Bases: model.modelTemplate.Rewards

Processes the decks reward for models expecting just the reward, but in range [0, 1]
Parameters phi (f1oat) - The scaling value of the reward
phi =1
processFeedback (feedback, lastAction, stimuli)
Returns
Return type modelFeedback

class tasks.decks.StimulusDecksLinear (**kwargs)
Bases: model.modelTemplate.Stimulus

processStimulus (observation)
Processes the decks stimuli for models expecting just the event

Returns

* stimuliPresent (int or list of int) — The elements present of the stimulus

« stimuliActivity (float or list of float) — The activity of each of the elements

6.5.2.5 tasks.taskTemplate module

tasks.taskTemplate Module

Author Dominic

Classes

Task() The abstract tasks class from which all others inherit

Task

class tasks.taskTemplate.Task
Bases: object

The abstract tasks class from which all others inherit
Many general methods for tasks are found only here

Name
The name of the class used when recording what has been used.

Type string

Methods Summary

feedback() Responds to the action from the participant

get_name() Returns the name of the class

Continued on next page

6.5. tasks package

47

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#object

pyHPDM Documentation, Release 0.9.9

Table 10 — continued from previous page

next() Produces the next stimulus for the iterator
params() Returns the parameters of the task as a dictionary
proceed() Updates the task before the next trialstep
receiveAction(action) Receives the next action from the participant
returnTaskState() Returns all the relevant data for this task run
standardResultOutput()

storeState() Stores the state of all the important variables so

that they can be output later

Methods Documentation
feedback ()
Responds to the action from the participant
Returns feedback
Return type None, int or float

classmethod get_name ()
Returns the name of the class

next ()
Produces the next stimulus for the iterator

Returns
e stimulus (None)

» nextValidActions (Tuple of ints) — The list of valid actions that the model can respond
with. Set to None, as they never vary.

Raises StopIteration

params ()
Returns the parameters of the task as a dictionary

Returns parameters — The parameters of the task
Return type dict

proceed ()
Updates the task before the next trialstep

receiveAction (action)
Receives the next action from the participant

Parameters action (int or string)- The action taken by the model

returnTaskState ()
Returns all the relevant data for this task run

Returns results — A dictionary containing the class parameters as well as the other useful
data

Return type dictionary
standardResultOutput ()

storeState ()
Stores the state of all the important variables so that they can be output later

Class Inheritance Diagram

Author Dominic

48 Chapter 6. Documentation

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/exceptions.html#StopIteration
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int

pyHPDM Documentation, Release 0.9.9

class tasks.taskTemplate.Task
Bases: object

The abstract tasks class from which all others inherit
Many general methods for tasks are found only here

Name
The name of the class used when recording what has been used.

Type string

feedback ()
Responds to the action from the participant

Returns feedback
Return type None, int or float

classmethod get_name ()
Returns the name of the class

next ()
Produces the next stimulus for the iterator

Returns
e stimulus (None)

» nextValidActions (Tuple of ints) — The list of valid actions that the model can respond
with. Set to None, as they never vary.

Raises StopIteration

params ()
Returns the parameters of the task as a dictionary

Returns parameters — The parameters of the task
Return type dict

proceed ()
Updates the task before the next trialstep

receiveAction (action)
Receives the next action from the participant

Parameters action (int or string)-— The action taken by the model

returnTaskState ()
Returns all the relevant data for this task run

Returns results — A dictionary containing the class parameters as well as the other useful
data

Return type dictionary
standardResultOutput ()

storeState ()
Stores the state of all the important variables so that they can be output later

6.5.2.6 tasks.paviov module

Author Dominic Hunt

Reference Value and prediction error in medial frontal cortex: integrating the single-unit and sys-
tems levels of analysis. Silverti, M., Seurinck, R., & Verguts, T. (2011). Frontiers in Human
Neuroscience, S(August), 75. doi:10.3389/fnhum.2011.00075

6.5. tasks package 49

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/exceptions.html#StopIteration
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int

pyHPDM Documentation, Release 0.9.9

class tasks.pavlov.Pavlov (rewMag=4, rewProb=array([0.87, 0.33]), stimMag=1, stim-

Dur=20, rewDur=4, simDur=30, stimRepeats=7)

Bases: tasks.taskTemplate. Task

Based on the Silvetti et al 2011 paper “Value and prediction error in medial frontal cortex: integrating the

single-unit and systems levels of analysis.”

Many methods are inherited from the tasks.taskTemplate.Task class. Refer to its documentation for missing

methods.

Name

The name of the class used when recording what has been used.

Type string

Parameters

rewMag (float, optional)- The size of the stimulus. Default 4

rewProb (array of floats, optional)- The probabilities of each stimulus
producing a reward. Default [0.85,0.33]

stimMag (float, optional) - The size of the stimulus. Default 1

stimDur (int, optional) - The duration, in tens of ms, that the stimulus is pro-
duced for. This should be longer than rewDur since rewDur is set to end when stimDur
ends. Default 200

rewDur (int, optional)-The duration,in tens of ms, that the reward is produced
for. Default 40

simDur (int, optional) - The duration, in tens of ms, that each stimulus event
is run for. Default 300

stimRepeats (int, optional)- The number of times a stimulus is introduced.
Default 72

feedback ()
Responds to the action from the participant

next ()

Produces the next stimulus for the iterator

Returns

o nextStim (tuple of c, rewSig and stimDur, described below)

* c (list of floats) — Contains the inputs for each of the stimuli

* rewSig (list of lists of floats) — Each list contains the rewards at each time
e stimDur (inr)

 nextValidActions (Tuple of ints) — The list of valid actions that the model can respond
with. Set to None, as there are no actions.

Raises StopIteration

proceed ()

Updates the task after feedback

receiveAction (action)
Receives the next action from the participant

Parameters action (int or string)- The action taken by the model

returnTaskState ()
Returns all the relevant data for this task run

50

Chapter 6. Documentation

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#StopIteration
https://docs.python.org/3/library/functions.html#int

pyHPDM Documentation, Release 0.9.9

Returns results — A dictionary containing the class parameters as well as the other useful
data

Return type dictionary

storeState ()
Stores the state of all the important variables so that they can be output later

tasks.pavlov.pavlovStimTemporal ()
Passes the pavlov stimuli to models that cope with stimuli and rewards that have a duration.

Returns pavlovStim — The function expects to be passed an event with three com-
ponents: (stim, rew,stimDur) “~and an action (unused) and yield a
series of events "“t,c,r . stim is the value of the stimulus. It is expected
to be a list-like object. rew is a list containing the reward for each trialstep. The reward is
expected to be a float. stimDur is the duration of the stimulus, an int. This should be
less than the length of rew. c the stimulus. r the reward. t is the time

Return type function

tasks.pavlov.Name
The identifier of the function

Type string

6.5.2.7 tasks.probSelect module

Author Dominic Hunt

Reference Genetic triple dissociation reveals multiple roles for dopamine in reinforcement learn-
ing. Frank, M. J., Moustafa, A. a, Haughey, H. M., Curran, T., & Hutchison, K. E. (2007).
Proceedings of the National Academy of Sciences of the United States of America, 104(41),
16311-16316. doi:10.1073/pnas.0706111104

class tasks.probSelect.ProbSelect (reward_probability=0.7, learning_action_pairs=None,
action_reward_probabilities=None, learn-
ing_length=240, test_length=60, num-
ber_actions=None, reward_size=1)
Bases: tasks.taskTemplate. Task
Probabilistic selection task based on Genetic triple dissociation reveals multiple roles for dopamine in reinforcement I
Frank, M. J., Moustafa, A. a, Haughey, H. M., Curran, T., & Hutchison, K. E. (2007). Proceedings
of the National Academy of Sciences of the United States of America, 104(41), 16311-16316.
doi:10.1073/pnas.0706111104

Many methods are inherited from the tasks.taskTemplate.Task class. Refer to its documentation for missing
methods.

Name
The name of the class used when recording what has been used.

Type string

Parameters

* reward_probability (float in range [0,1], optional)- The prob-
ability that a reward is given for choosing action A. Default is 0.7

* action_reward probabilities (dictionary, optional) — A dictio-
nary of the potential actions that can be taken and the probability of a reward. Default
{O:rewardProb, 1:1-rewardProb, 2:0.5, 3:0.5}

* learning_action_pairs (list of tuples, optional) — The pairs of
actions shown together in the learning phase.

6.5. tasks package 51

pyHPDM Documentation, Release 0.9.9

* learning_length (int, optional) — The number of trials in the learning
phase. Default is 240

* test_length (int, optional)- The number of trials in the test phase. Default
is 60

* reward_size (float, optional)- The size of reward given if successful. De-
fault 1

* number_actions (int, optional)- The number of actions that can be chosen
at any given time, chosen at random from actRewardProb. Default 4

Notes

The task is broken up into two sections: a learning phase and a transfer phase. Participants choose between
pairs of four actions: A, B, M1 and M2. Each provides a reward with a different probability: A:P>0.5,
B:1-P<0.5, M1=M2=0.5. The transfer phase has all the action pairs but no feedback. This class only covers
the learning phase, but models are expected to be implemented as if there is a transfer phase.

feedback ()
Responds to the action from the participant

next ()
Produces the next stimulus for the iterator

Returns
e stimulus (None)

» next_valid_actions (Tuple of length 2 of ints) — The list of valid actions that the model
can respond with.

Raises StopIteration

proceed ()
Updates the task after feedback

receiveAction (action)
Receives the next action from the participant

Parameters action (int or string)- The action taken by the model

returnTaskState ()
Returns all the relevant data for this task run

Returns results — A dictionary containing the class parameters as well as the other useful
data

Return type dictionary

storeState ()
Stores the state of all the important variables so that they can be output later

class tasks.probSelect.RewardProbSelectDirect (**kwargs)
Bases: model.modelTemplate.Rewards

Processes the probabilistic selection reward for models expecting just the reward
processFeedback (reward, action, stimuli)

Returns

Return type modelFeedback

class tasks.probSelect.StimulusProbSelectDirect (**kwargs)
Bases: model.modelTemplate.Stimulus

Processes the selection stimuli for models expecting just the event

52 Chapter 6. Documentation

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#StopIteration
https://docs.python.org/3/library/functions.html#int

pyHPDM Documentation, Release 0.9.9

Examples

>>> stim = StimulusProbSelectDirect ()
>>> stim.processStimulus (1)

(1, 1)

>>> stim.processStimulus (0)

(1, 1)

processStimulus (observation)
Processes the decks stimuli for models expecting just the event

Returns

o stimuliPresent (int or list of int)

« stimuliActivity (float or list of float)

6.5.2.8 tasks.probStim module

Author Dominic Hunt

class tasks.probStim.Probstim (cues=None, actualities=None, trialsteps=100, numStim-

uli=4, correctProb=0.8, correctProbabilities=None, reward-
lessT=None)

Bases: tasks.taskTemplate. Task

Basic probabilistic

Many methods are inherited from the tasks.taskTemplate.Task class. Refer to its documentation for missing
methods.

Name
The name of the class used when recording what has been used.

Type string

Parameters

actualities (int, optional) — The actual reality the cues pointed to. The
correct response the participant is trying to get correct

cues (array of floats, optional)-The cues used to guess the actualities

trialsteps (int, optional)-Ifno provided cues, itis the number of trialsteps
for the generated set of cues. Default 100

numStimuli (int, optional) - If no provided cues, it is the number of distinct
stimuli for the generated set of cues. Default 4

correctProb (float in [0,1], optional)-Ifno actualities provided, it is
the probability of the correct answer being answer 1 rather than answer 0. The default
is0.8

correctProbs (list or array of floats in [0,1], optional) —
If no actualities provided, it is the probability of the correct answer being answer 1 rather
than answer O for each of the different stimuli. Default [corrProb, l-corrProb]
* (numStimuli//2) + [corrProb] * (numStimuli%2)

rewardlessT (int, optional) — If no actualities provided, it is the num-
ber of actualities at the end of the tasks that will have a None reward. Default
2+xnumStimuli

feedback ()
Feedback to the action from the participant

6.5. tasks package

53

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int

pyHPDM Documentation, Release 0.9.9

next ()
Produces the next stimulus for the iterator

Returns
e stimulus (Tuple) — The current cues

 nextValidActions (Tuple of ints or None) — The list of valid actions that the model
can respond with. Set to (0,1), as they never vary.

Raises StopIteration

proceed ()
Updates the task after feedback

receiveAction (action)
Receives the next action from the participant

Parameters action (int or string)- The action taken by the model

returnTaskState ()
Returns all the relevant data for this task run

Returns results — A dictionary containing the class parameters as well as the other useful
data

Return type dictionary

storeState ()
Stores the state of all the important variables so that they can be output later

class tasks.probStim.RewardProbStimDiff (**kwargs)
Bases: model.model Template.Rewards

Processes the reward for models expecting reward corrections
processFeedback (feedback, lastAction, stimuli)
Returns
Return type modelFeedback

class tasks.probStim.RewardProbStimDualCorrection (**kwargs)
Bases: model.modelTemplate.Rewards

Processes the reward for models expecting the reward correction from two possible actions.
epsilon =1
processFeedback (feedback, lastAction, stimuli)

Returns

Return type modelFeedback

class tasks.probStim.StimulusProbStimDirect (**kwargs)
Bases: model.modelTemplate.Stimulus

Processes the stimuli for models expecting just the event

processStimulus (observation)
Processes the decks stimuli for models expecting just the event

Returns
« stimuliPresent (int or list of int) — The elements present of the stimulus

« stimuliActivity (float or list of float) — The activity of each of the elements

54 Chapter 6. Documentation

https://docs.python.org/3/library/exceptions.html#StopIteration
https://docs.python.org/3/library/functions.html#int

pyHPDM Documentation, Release 0.9.9

6.5.2.9 tasks.weather module

Author Dominic Hunt

Reference Probabilistic classification learning in amnesia. Knowlton, B. J., Squire, L. R., & Gluck,
M. a. (1994). Learning & Memory(Cold Spring Harbor, N.Y.), 1(2), 106-120. http://doi.org/
10.1101/lm.1.2.106

class tasks.weather.RewardWeatherDiff (**kwargs)
Bases: model.modelTemplate.Rewards

Processes the weather reward for models expecting reward corrections
processFeedback (feedback, lastAction, stimuli)

Returns

Return type modelFeedback

class tasks.weather.RewardWeatherDualCorrection (**kwargs)
Bases: model.modelTemplate.Rewards

Processes the decks reward for models expecting the reward correction from two possible actions.
epsilon =1
processFeedback (feedback, lastAction, stimuli)

Returns

Return type modelFeedback

class tasks.weather.RewardsWeatherDirect (**kwargs)
Bases: model.modelTemplate.Rewards

Processes the weather reward for models expecting the reward feedback
processFeedback (feedback, lastAction, stimuli)

Returns

Return type modelFeedback

class tasks.weather.StimulusWeatherDirect (**kwargs)
Bases: model.modelTemplate.Stimulus

Processes the weather stimuli for models expecting just the event

processStimulus (observation)
Processes the decks stimuli for models expecting just the event

Returns
« stimuliPresent (int or list of int) — The elements present of the stimulus
* stimuliActivity (float or list of float) — The activity of each of the elements

class tasks.weather.Weather (cueProbs=[[0.2, 0.8, 0.2, 0.8], [0.8, 0.2, 0.8, 0.2]], learn-
ingLen=200, testLen=100, number_cues=None, cues=None, ac-

tualities=None)
Bases: tasks.taskTemplate. Task

Based on the 1994 paper “Probabilistic classification learning in amnesia.”

Many methods are inherited from the tasks.taskTemplate.Task class. Refer to its documentation for missing
methods.

Name
The name of the class used when recording what has been used.

Type string

6.5. tasks package 55

http://doi.org/10.1101/lm.1.2.106
http://doi.org/10.1101/lm.1.2.106

pyHPDM Documentation, Release 0.9.9

Parameters

* cueProbs (array of int, optional) — If generating data, the likelihood of
each cue being associated with each actuality. Each row of the array describes one
actuality, with each column representing one cue. Each column is assumed sum to 1

e number_ cues (int, optional)- The number of cues

* learninglen (int, optional)-—The number of trials in the learning phase. De-
fault is 200

* testLen (int, optional)- The number of trials in the test phase. Default is 100

* actualities (array of int, optional) — The actual reality the cues
pointed to; the correct response the participant is trying to get correct

* cues (array of floats, optional) — The stimulus cues used to guess the
actualities
defaultCueProbs = [[0.2, 0.8, 0.2, 0.8], [0.8, 0.2, 0.8, 0.2]]

feedback ()
Feedback to the action from the participant

next ()
Produces the next stimulus for the iterator

Returns
« stimulus (7uple) — The current cues

* nextValidActions (Tuple of ints or None) — The list of valid actions that the model
can respond with. Set to (0,1), as they never vary.

Raises StopIteration

proceed ()
Updates the task after feedback

receiveAction (action)
Receives the next action from the participant

Parameters action (int or string)- The action taken by the model

returnTaskState ()
Returns all the relevant data for this task run

Returns results — A dictionary containing the class parameters as well as the other useful
data

Return type dictionary

storeState ()
Stores the state of all the important variables so that they can be output later

tasks.weather.genActualities (cueProbs, cues, learningLen, testLen)
Parameters
* cueProbs —
* cues —
* learninglLen —
* testLen -
Returns
Return type actions

tasks.weather.genCues (number_cues, taskLen)

56 Chapter 6. Documentation

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#StopIteration
https://docs.python.org/3/library/functions.html#int

pyHPDM Documentation, Release 0.9.9

Parameters
* cueProbs —
* taskLen -
Returns

Return type cues

6.6 modelGenerator module

6.6.1 modelGenerator Module

Author Dominic Hunt

6.6.1.1 Classes

Mode 1([number_actions, number_cues, ...])

The model class is a general template for a model.

Mode 1Gen(model_name], parameters, Generates model class instances based on a model and
other_options]) a set of varying parameters
Rewards(**kwargs) This acts as an interface between the feedback from a
task and the feedback a model can process
Stimulus(**kwargs) Stimulus processor class.
ModelGen

class modelGenerator.ModelGen (model_name, parameters=None, other_options=None)

Bases: object

Generates model class instances based on a model and a set of varying parameters

Parameters

* model_name (string)— The name of the file where a model.modelTemplate.Model

class can be found

* parameters
floats,

(dictionary containing floats or lists of
optional) — Parameters are the options that you are or are likely

to change across model instances. When a parameter contains a list, an instance of
the model will be created for every combination of this parameter with all the others.

Default None

* other_options (dictionary of float,

elements,

string or binary valued

optional) — These contain all the the model options that define the

version of the model being studied. Default None

Methods Summary

iter_details()

Yields a list containing a model object and param-
eters to initialise them

next()

Produces the next item for the iterator

Methods Documentation

iter details()

Yields a list containing a model object and parameters to initialise them

6.6. modelGenerator module

57

https://docs.python.org/3/library/functions.html#object

pyHPDM Documentation, Release 0.9.9

Returns
* model (model.modelTemplate.Model) — The model to be initialised
* parameters (ordered dictionary of floats or bools) — The model instance parameters

« other_options (dictionary of floats, strings and binary values)

next ()
Produces the next item for the iterator

Returns models

Return type list of model.model.model instances

6.6.1.2 Class Inheritance Diagram

Author Dominic Hunt

class modelGenerator .ModelGen (model_name, parameters=None, other_options=None)
Bases: object

Generates model class instances based on a model and a set of varying parameters

Parameters

* model_name (string) - The name of the file where a model.modelTemplate.Model
class can be found

* parameters (dictionary containing floats or lists of
floats, optional) — Parameters are the options that you are or are likely
to change across model instances. When a parameter contains a list, an instance of
the model will be created for every combination of this parameter with all the others.
Default None

* other_options(dictionary of float, string or binary valued
elements, optional) - These contain all the the model options that define the
version of the model being studied. Default None

iter_details(()
Yields a list containing a model object and parameters to initialise them

Returns
* model (model.modelTemplate.Model) — The model to be initialised
» parameters (ordered dictionary of floats or bools) — The model instance parameters
* other_options (dictionary of floats, strings and binary values)

next ()
Produces the next item for the iterator

Returns models

Return type list of model.model.model instances

6.7 model package

6.7.1 Subpackages

6.7.1.1 model.decision package

58 Chapter 6. Documentation

https://docs.python.org/3/library/functions.html#object

pyHPDM Documentation, Release 0.9.9

Submodules
model.decision.binary module
model.decision.binary Module

Author Dominic Hunt

A collection of decision making functions where there are only two possible actions

Functions

single([task_responses]) Decisions using a switching probability

single

model.decision.binary.single (task_responses=(0, 1))
Decisions using a switching probability

Parameters task_responses (tuple of length two, optional) - Provides the
two action responses expected by the task

Returns

* decision_function (function) — Calculates the decisions based on the probabilities and
returns the decision and the probability of that decision

* decision (int or None) — The action to be taken by the model

* probabilities (OrderedDict of valid responses) — A dictionary of considered actions as
keys and their associated probabilities as values

Examples

>>> np.random.seed (100)

>>> dec = single ()

>>> dec (0.23)

(0, OrderedDict([(0, 0.77), (1, 0.23)1))
>>> dec(0.23, 0)

(0, OrderedDict([(0, 0.77), (1, 0.23)1))

Author Dominic Hunt
A collection of decision making functions where there are only two possible actions

model.decision.binary.single (task_responses=(0, 1))
Decisions using a switching probability

Parameters task_responses (tuple of length two, optional) - Provides the
two action responses expected by the task

Returns

* decision_function (function) — Calculates the decisions based on the probabilities and
returns the decision and the probability of that decision

* decision (int or None) — The action to be taken by the model

* probabilities (OrderedDict of valid responses) — A dictionary of considered actions as
keys and their associated probabilities as values

6.7. model package 59

pyHPDM Documentation, Release 0.9.9

Examples

>>> np.random.seed (100)

>>> dec = single()

>>> dec (0.23)

(0, OrderedDict([(0, 0.77), (1, 0.23)1))
>>> dec(0.23, 0)

(0, OrderedDict ([(0, 0.77), (1, 0.23)]))

model.decision.discrete module
model.decision.discrete Module

Author Dominic Hunt

A collection of decision making functions where there are no limits on the number of actions, but they are count-
able.

Functions
maxProb([task_responses]) Decisions for an arbitrary number of choices
probThresh([task_responses, eta]) Decisions for an arbitrary number of choices
weightProb([task_responses]) Decisions for an arbitrary number of choices
maxProb

model .decision.discrete.maxProb (task_responses=(0, 1))
Decisions for an arbitrary number of choices

Choice made by choosing the most likely

Parameters task responses (tuple) — Provides the action responses expected by the
tasks for each probability estimate.

Returns

* decision_function (function) — Calculates the decisions based on the probabilities and
returns the decision and the probability of that decision

* decision (int or None) — The action to be taken by the model

* probDict (OrderedDict of valid responses) — A dictionary of considered actions as keys
and their associated probabilities as values

See also:

models.QLearn (), models.QLearn2 (), models.OpAL ()

Examples

>>> np.random.seed (100)

>>> d = maxProb ([1,2,3])

>>> d([0.6, 0.3, 0.5])

(1, OrderedDict ([(1, 0.6), (2, 0.3), (3, 0.5)1))
>>> d([0.2, 0.3, 0.5], trial_responses=[1, 2])
(2, OrderedDict ([(1, 0.2), (2, 0.3), (3, 0.5)1))
>>> d([0.2, 0.3, 0.5], trial_responses=[])

(continues on next page)

60 Chapter 6. Documentation

https://docs.python.org/3/library/stdtypes.html#tuple

pyHPDM Documentation, Release 0.9.9

(continued from previous page)

(None, OrderedDict([(1, 0.2), (2, 0.3), (3, 0.5)1))

>>> d = maxProb (["A", "B", "C"])

>>> d([0.6, 0.3, 0.5], trial_responses=["A", "B"])

('"A'", OrderedDict([('A', 0.6), ('B', 0.3), ('C', 0.5)1))
probThresh

model.decision.discrete.probThresh (task_responses=(0, 1), eta=0.8)
Decisions for an arbitrary number of choices

Choice made by choosing when certain (when probability above a certain value), otherwise randomly

Parameters

* task_responses (tuple) — Provides the action responses expected by the tasks
for each probability estimate.

* eta(float, optional)- The value above which a non-random decision is made.
Default value is 0.8

Returns

* decision_function (function) — Calculates the decisions based on the probabilities and
returns the decision and the probability of that decision

* decision (int or None) — The action to be taken by the model

* probDict (OrderedDict of valid responses) — A dictionary of considered actions as keys
and their associated probabilities as values

Examples

>>> np.random.seed (100)
>>> d = probThresh (task_responses=[0, 1, 2, 3], eta=0.8)
>>> d([0.2, 0.8, 0.3, 0.5])
(1, OrderedDict ([(0, 0.2), (1, 0.8), (2, 0.3), (3, 0.51))
>>> d([0.2, 0.8, 0.3, 0.5], trial_responses=[0, 2])
(0, OrderedDict ([(0, 0.2), (1, 0.8), (2, 0.3), (3, 0.51))
>>> d([0.2, 0.8, 0.3, 0.5], trial_responses=[])
(None, OrderedDict([(0, 0.2), (1, 0.8), (2, 0.3), (3, 0.5)1))
>>> d probThresh (["A","B","C"])

0.8], trial_responses=["A", "B"])

(r¢'a', 0.2y, ('B', 0.3), ('c', 0.8)1))

>>> d([0.2, 0.3,
("A', OrderedDict

[

weightProb

model .decision.discrete.weightProb (fask_responses=(0, 1))
Decisions for an arbitrary number of choices

Choice made by choosing randomly based on which are valid and what their associated probabilities are

Parameters task_ responses (tuple)—Provides the action responses expected by the task
for each probability estimate.

Returns

* decision_function (function) — Calculates the decisions based on the probabilities and
returns the decision and the probability of that decision

* decision (int or None) — The action to be taken by the model

6.7. model package 61

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple

pyHPDM Documentation, Release 0.9.9

* probDict (OrderedDict of valid responses) — A dictionary of considered actions as keys

and their associated probabilities as values
See also:

models.QLearn (), models.QLearn2 (), models.OpAL ()

Examples

>>> np.random.seed (100)

>>> d = weightProb ([0, 1, 2, 3])

>>> d([0.4, 0.8, 0.3, 0.5])

(1, OrderedDict ([(0, 0.2), (1, 0.4), (2, 0.15), (3, 0.25)1))
>>> d([0.1, 0.3, 4, 0.21])

(

0.
(1, OrderedDict ([(0, 0.1), (1, 0.3), (2, 0.4), (3, 0.2)1))
>>> d([0.2, 0.5, 0.3, 0.5], trial_responses=[0, 2])
(2, OrderedDict ([(0, 0.4), (1, 0), (2, 0.6), (3, 0)1))
>>> d = weightProb (["A", "B", "C"])
>>> d([0.2, 0.3, 0.5], trial_responses=["A", "B"])

[

(u'B', OrderedDict([(u'A', 0.4), (u'B', 0.6), (u'c', 0)1))
>>> d([0.2, 0.3, 0.5], trial_responses=[])
(None, OrderedDict([(u'A', 0.2), (u'B', 0.3), (u'Cc', 0.5)1))

Author Dominic Hunt

A collection of decision making functions where there are no limits on the number of actions, but they are count-

able.

model .decision.discrete.maxProb (task_responses=(0, 1))
Decisions for an arbitrary number of choices

Choice made by choosing the most likely

Parameters task_responses (tuple) — Provides the action responses expected by the

tasks for each probability estimate.

Returns

* decision_function (function) — Calculates the decisions based on the probabilities and

returns the decision and the probability of that decision

* decision (int or None) — The action to be taken by the model

* probDict (OrderedDict of valid responses) — A dictionary of considered actions as keys

and their associated probabilities as values
See also:

models.QLearn (), models.QLearn? (), models.OpAL ()

Examples

>>> np.random.seed (100)

>>> d = maxProb ([1,2,3])

>>> d([0.6, 0.3, 0.5])

(1, OrderedDict ([(1, 0.6), (2, 0.3), (3, 0.5)1))
>>> d([0.2, 0.3, 0.5], trial_responses=[1l, 2])

(2, OrderedDict ([(1, 0.2), (2, 0.3), (3, 0.5)1))
>>> d([0.2, 0.3, 0.5], trial_responses=[])

(None, OrderedDict([(1, 0.2), (2, 0.3), (3, 0.5)1))

>>> d = maxProb(["Z—\", vau’ "C"])
>>> d ([0 0.3, 0.5], trial_responses=["A", "B"])
('a', Orderelect([('A', 0.6), ('B', 0.3), ('Cc', 0.51))

62 Chapter 6.

Documentation

https://docs.python.org/3/library/stdtypes.html#tuple

pyHPDM Documentation, Release 0.9.9

model.decision.discrete.probThresh (task_responses=(0, 1), eta=0.8)
Decisions for an arbitrary number of choices

Choice made by choosing when certain (when probability above a certain value), otherwise randomly
Parameters

* task_responses (tuple) — Provides the action responses expected by the tasks
for each probability estimate.

* eta(float, optional)- The value above which a non-random decision is made.
Default value is 0.8

Returns

* decision_function (function) — Calculates the decisions based on the probabilities and
returns the decision and the probability of that decision

* decision (int or None) — The action to be taken by the model

* probDict (OrderedDict of valid responses) — A dictionary of considered actions as keys
and their associated probabilities as values

Examples

>>> np.random.seed (100)

>>> d = probThresh (task_responses=[0, 1, 2, 3], eta=0.8)

>>> d([0.2, 0.8, 0.3, 0.5])

(1, OrderedDict ([(0, 0.2), (1, 0.8), (2, 0.3), (3, 0.51))
>>> d([0.2, 0.8, 0.3, 0.5], trial_responses=[0, 2])

(0, OrderedDict ([(0, 0.2), (1, 0.8), (2, 0.3), (3, 0.51))
>>> d([0.2, 0.8, 0.3, 0.5], trial_responses=[])

(None, OrderedDict([(0, 0.2), (1, 0.8), (2, 0.3), (3, 0.51))

>>> d = probThresh (["A","B","C"])
>>> d([0.2, 0.3, 0.8], trial_responses=["A", "B"])
('"A', OrderedDict([('A', 0.2), ('B', 0.3), ('C', 0.8)1))

model .decision.discrete.weightProb (fask_responses=(0, 1))
Decisions for an arbitrary number of choices

Choice made by choosing randomly based on which are valid and what their associated probabilities are

Parameters task_responses (tuple)—Provides the action responses expected by the task
for each probability estimate.

Returns

* decision_function (function) — Calculates the decisions based on the probabilities and
returns the decision and the probability of that decision

* decision (int or None) — The action to be taken by the model

 probDict (OrderedDict of valid responses) — A dictionary of considered actions as keys
and their associated probabilities as values

See also:

models.QLearn (), models.QLearn? (), models.OpAL ()

Examples

>>> np.random.seed (100)
>>> d = weightProb ([0, 1, 2, 3])
>>> d([0.4, 0.8, 0.3, 0.5])

(continues on next page)

6.7. model package 63

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple

pyHPDM Documentation, Release 0.9.9

(continued from previous page)

(1, OrderedbDict([(0, 0.2), (1, 0.4), (2, 0.15), (3, 0.25)1))
>>> d([0.1, 0.3, .4, 0.21)
(1, OrderedDict ([(0, 0.1 (1, 0.3), (2, 0.4), (3, 0.2)1))

>>> d([0.2, 0.5,

()

0

(0,) s

0.3, 0.5], trial_responses=[0, 21)
(2, OrderedDict ([()

b

0

t

0.4), (1, 0), (2, 0.6), (3, 0)1))
>>> d = weightPro "A", "B", "C"])
>>> d([0.2, 0.3,], trial_responses=["A", "B"])

(1
5

(u'B', OrderedDict([(u'A', 0.4), (u'B', 0.6), (u'C', 0)1))
5
[

0

>>> d([0.2, 0.3, 0.5], trial_responses=[])
(None, OrderedDict([(u'A', 0.2), (u'B', 0.3), (u'C', 0.5)1))

6.7.2 Submodules

6.7.2.1 model.ACBasic module

Author Dominic Hunt
Reference Based on ideas we had.

class model.ACBasic.ACBasic (alpha=0.3, beta=4, invBeta=None, alphaE=None, al-

phaA=None, expect=None, actorExpect=None, **kwargs)
Bases: model.modelTemplate.Model

A basic, complete actor-critic model

Name
The name of the class used when recording what has been used.

Type string

Parameters
* alpha (float, optional)- Learning rate parameter

* alphakE (float, optional)— Learning rate parameter for the update of the ex-
pectations. Default 1pha

* alphaA (float, optional)-Learning rate parameter for the update of the actor.
Default 1pha

* beta (float, optional)- Sensitivity parameter for probabilities

* invBeta (float, optional) - Inverse of sensitivity parameter. Defined as ﬁ
Default 0.2

* number_actions (integer, optional)- The maximum number of valid ac-
tions the model can expect to receive. Default 2.

* number_cues (integer, optional)-

The initial maximum number of stimuli the model can expect to receive. Default
1.

* number_critics (integer, optional) — The number of different reaction
learning sets. Default number_actions*number_cues

* action_codes (dict with string or int as keys and int
values, optional) — A dictionary used to convert between the action refer-
ences used by the task or dataset and references used in the models to describe the
order in which the action information is stored.

* prior (array of floats in [0, 1], optional) — The prior probability of of the states
being the correct one. Default ones ((number_actions, number_cues)) /
number_critics)

64 Chapter 6. Documentation

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

pyHPDM Documentation, Release 0.9.9

* expect (array of floats, optional) — The initialisation of the ex-
pected reward. Default ones ((number_actions, number_cues)) * 5 /
number_cues

e stimFunc (function, optional) — The function that transforms the stimulus
into a form the model can understand and a string to identify it later. Default is
blankStim

e rewFunc (function, optional)— The function that transforms the reward into
a form the model can understand. Default is blankRew

* decFunc (function, optional) — The function that takes the inter-
nal values of the model and turns them in to a decision. Default is
model.decision.discrete.weightProb

actorStimulusProbs ()
Calculates in the model-appropriate way the probability of each action.
Returns probabilities — The probabilities associated with the action choices
Return type 1D ndArray of floats

calcProbabilities (actionValues)
Calculate the probabilities associated with the actions

Parameters actionValues (1D ndArray of floats)-—
Returns probArray — The probabilities associated with the actionValues
Return type 1D ndArray of floats

delta (reward, expectation, action, stimuli)
Calculates the comparison between the reward and the expectation

Parameters

* reward (float)— The reward value

* expectation (float)— The expected reward value

e action (int) - The chosen action

e stimuli ({int | float | tuple | None})- The stimuli received
Returns
Return type delta

returnTaskState ()
Returns all the relevant data for this model

Returns results — The dictionary contains a series of keys including Name, Probabilities,
Actions and Events.

Return type dict

rewardExpectation (observation)
Calculate the estimated reward based on the action and stimuli

This contains parts that are task dependent
Parameters observation ({int | float | tuple})— The setof stimuli
Returns
« actionExpectations (array of floats) — The expected rewards for each action
* stimuli (/ist of floats) — The processed observations

« activeStimuli (list of [0, 1] mapping to [False, True]) — A list of the stimuli that were
or were not present

6.7.

model package 65

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict

pyHPDM Documentation, Release 0.9.9

storeState ()
Stores the state of all the important variables so that they can be accessed later

updateModel (delta, action, stimuli, stimuliFilter)
Parameters
* delta (float)— The difference between the reward and the expected reward
* action (int)— The action chosen by the model in this trialstep
e stimuli (1ist of float)- The weights of the different stimuli in this trialstep

e stimuliFilter (1ist of bool)— Alistdescribing if a stimulus cue is present
in this trialstep

6.7.2.2 model. ACE module

Author Dominic Hunt

Reference Based on ideas we had.

class model.ACE.ACE (alpha=0.3, epsilon=0.1, alphaE=None, alphaA=None, expect=None, actor-

Expect=None, **kwargs)
Bases: model.modelTemplate.Model

A basic, complete actor-critic model with decision making based on QLearnE

Name
The name of the class used when recording what has been used.

Type string

Parameters
* alpha (float, optional)- Learning rate parameter

* alphaE (float, optional)— Learning rate parameter for the update of the ex-
pectations. Default 1pha

* alphaA (float, optional)- Learning rate parameter for the update of the actor.
Default 1pha

* epsilon (float, optional)— Noise parameter. The larger it is the less likely
the model is to choose the highest expected reward

* number_actions (integer, optional)- The maximum number of valid ac-
tions the model can expect to receive. Default 2.

* number_cues (integer, optional)-

The initial maximum number of stimuli the model can expect to receive. Default
1.

* number_critics (integer, optional) — The number of different reaction
learning sets. Default number_actions*number_cues

* action_codes (dict with string or int as keys and int
values, optional) — A dictionary used to convert between the action refer-
ences used by the task or dataset and references used in the models to describe the
order in which the action information is stored.

* prior (array of floats in [0, 1], optional) — The prior probability of of the states
being the correct one. Default ones ((number_actions, number_cues)) /
number_critics)

* expect (array of floats, optional) — The initialisation of the ex-
pected reward. Default ones ((number_actions, number_cues)) * 5 /
number_cues

66

Chapter 6. Documentation

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

pyHPDM Documentation, Release 0.9.9

e stimFunc (function, optional)— The function that transforms the stimulus
into a form the model can understand and a string to identify it later. Default is
blankStim

e rewFunc (function, optional)— The function that transforms the reward into
a form the model can understand. Default is blankRew

e decFunc (function, optional) - The function that takes the inter-
nal values of the model and turns them in to a decision. Default is
model.decision.discrete.weightProb

actorStimulusProbs ()
Calculates in the model-appropriate way the probability of each action.
Returns probabilities — The probabilities associated with the action choices
Return type 1D ndArray of floats

calcProbabilities (actionValues)
Calculate the probabilities associated with the actions

Parameters actionvalues (1D ndArray of floats)-
Returns probArray — The probabilities associated with the actionValues
Return type 1D ndArray of floats

delta (reward, expectation, action, stimuli)
Calculates the comparison between the reward and the expectation

Parameters

e reward (float)— The reward value

* expectation (float)— The expected reward value

e action (int)— The chosen action

e stimuli ({int | float | tuple | None})- The stimuli received
Returns
Return type delta

returnTaskState ()
Returns all the relevant data for this model

Returns results — The dictionary contains a series of keys including Name, Probabilities,
Actions and Events.

Return type dict

rewardExpectation (observation)
Calculate the estimated reward based on the action and stimuli

This contains parts that are task dependent
Parameters observation ({int | float | tuple})— The setof stimuli
Returns
 actionExpectations (array of floats) — The expected rewards for each action
o stimuli (list of floats) — The processed observations

* activeStimuli (/ist of [0, 1] mapping to [False, True]) — A list of the stimuli that were
or were not present

storeState ()
Stores the state of all the important variables so that they can be accessed later

updateModel (delta, action, stimuli, stimuliFilter)

6.7.

model package 67

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict

pyHPDM Documentation, Release 0.9.9

Parameters
* delta (float) - The difference between the reward and the expected reward
* action (int) - The action chosen by the model in this trialstep
e stimuli (1ist of float)- The weights of the different stimuli in this trialstep

e stimuliFilter (list of bool)— A listdescribing if a stimulus cue is present
in this trialstep

6.7.2.3 model.ACES module

Author Dominic Hunt
Reference Based on ideas we had.

class model.ACES.ACES (alpha=0.3, epsilon=0.1, expect=None, actorExpect=None, **kwargs)
Bases: model.modelTemplate.Model

A basic, complete actor-critic model with decision making based on QLearnE

Name
The name of the class used when recording what has been used.

Type string

Parameters
* alpha (float, optional)- Learning rate parameter

* epsilon (float, optional)— Noise parameter. The larger it is the less likely
the model is to choose the highest expected reward

* number_actions (integer, optional)- The maximum number of valid ac-
tions the model can expect to receive. Default 2.

* number_cues (integer, optional)-

The initial maximum number of stimuli the model can expect to receive. Default
1.

* number_critics (integer, optional) — The number of different reaction
learning sets. Default number_actions*number_cues

* action_codes (dict with string or int as keys and int
values, optional) — A dictionary used to convert between the action refer-
ences used by the task or dataset and references used in the models to describe the
order in which the action information is stored.

* prior (array of floats in [0, 1], optional) — The prior probability of of the states
being the correct one. Default ones ((number_actions, number_cues)) /
number_critics)

* expect (array of floats, optional) — The initialisation of the ex-
pected reward. Default ones ((number_actions, number_cues)) % 5 /
number_cues

e stimFunc (function, optional)— The function that transforms the stimulus
into a form the model can understand and a string to identify it later. Default is
blankStim

e rewFunc (function, optional)— The function that transforms the reward into
a form the model can understand. Default is blankRew

e decFunc (function, optional) - The function that takes the inter-
nal values of the model and turns them in to a decision. Default is
model.decision.discrete.weightProb

68 Chapter 6. Documentation

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

pyHPDM Documentation, Release 0.9.9

actorStimulusProbs ()
Calculates in the model-appropriate way the probability of each action.

Returns probabilities — The probabilities associated with the action choices
Return type 1D ndArray of floats

calcProbabilities (actionValues)
Calculate the probabilities associated with the actions

Parameters actionvValues (1D ndArray of floats)-
Returns probArray — The probabilities associated with the actionValues
Return type 1D ndArray of floats

delta (reward, expectation, action, stimuli)
Calculates the comparison between the reward and the expectation

Parameters

e reward (f1oat)— The reward value

* expectation (float)— The expected reward value

* action (int)— The chosen action

e stimuli ({int | float | tuple | None}) - The stimuli received
Returns
Return type delta

returnTaskState ()
Returns all the relevant data for this model

Returns results — The dictionary contains a series of keys including Name, Probabilities,
Actions and Events.

Return type dict

rewardExpectation (observation)
Calculate the estimated reward based on the action and stimuli

This contains parts that are task dependent
Parameters observation ({int | float | tuple})- The setof stimuli
Returns
 actionExpectations (array of floats) — The expected rewards for each action
« stimuli (/ist of floats) — The processed observations

* activeStimuli (list of [0, 1] mapping to [False, True]) — A list of the stimuli that were
or were not present

storeState ()
Stores the state of all the important variables so that they can be accessed later

updateModel (delta, action, stimuli, stimuliFilter)
Parameters
* delta (float) - The difference between the reward and the expected reward
* action (int) - The action chosen by the model in this trialstep
e stimuli (1ist of float)-The weights of the different stimuli in this trialstep

* stimuliFilter (list of bool)— A listdescribing if a stimulus cue is present
in this trialstep

. model package 69

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

pyHPDM Documentation, Release 0.9.9

6.7.2.4 model.BP module

Author Dominic Hunt

class model.BP.BP (alpha=0.3, beta=4, dirichletlnit=1, validRewards=array([0, 1]), inv-

Beta=None, **kwargs)
Bases: model.modelTemplate.Model

The Bayesian predictor model

Name
The name of the class used when recording what has been used.

Type string

Parameters
* alpha (float, optional)- Learning rate parameter
* beta (float, optional)- Sensitivity parameter for probabilities. Default 4

 invBeta (float, optional)- Inverse of sensitivity parameter. Defined as 1.

B+1
Default 0.2

e number_actions (integer, optional)- The maximum number of valid ac-
tions the model can expect to receive. Default 2.

* number_cues (integer, optional)-

The initial maximum number of stimuli the model can expect to receive. Default
1.

* number_critics (integer, optional) — The number of different reaction
learning sets. Default number_actions*number_cues

* validRewards (1ist, np.ndarray, optional)- The differentreward val-
ues that can occur in the task. Default array ([0, 1])

* action_codes (dict with string or int as keys and int
values, optional) — A dictionary used to convert between the action refer-
ences used by the task or dataset and references used in the models to describe the
order in which the action information is stored.

e dirichletInit (float, optional)-The initial values for values of the dirich-
let distribution. Normally 0, 1/2 or 1. Default 1

* prior (array of floatsin [0, 17, optional) — Ignored in this case

e stimFunc (function, optional)— The function that transforms the stimulus
into a form the model can understand and a string to identify it later. Default is
blankStim

e rewFunc (function, optional)— The function that transforms the reward into
a form the model can understand. Default is blankRew

e decFunc (function, optional) - The function that takes the inter-
nal values of the model and turns them in to a decision. Default is
model.decision.discrete.weightProb

actStimMerge (dirichletVals, stimuli)

actorStimulusProbs ()
Calculates in the model-appropriate way the probability of each action.

Returns probabilities — The probabilities associated with the action choices
Return type 1D np.ndArray of floats

calcActExpectations (dirichletVals)

70 Chapter 6. Documentation

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float

pyHPDM Documentation, Release 0.9.9

calcProbabilities (actionValues)
Calculate the probabilities associated with the actions

Parameters actionValues (1D np.ndArray of floats)-—
Returns probArray — The probabilities associated with the actionValues
Return type 1D np.ndArray of floats

delta (reward, expectation, action, stimuli)
Calculates the comparison between the reward and the expectation

Parameters

e reward (float)— The reward value

* expectation (float)— The expected reward value

* action (int)— The chosen action

e stimuli ({int | float | tuple | None}) - The stimuli received
Returns
Return type delta

returnTaskState ()
Returns all the relevant data for this model

Returns results — The dictionary contains a series of keys including Name, Probabilities,
Actions and Events.

Return type dict

rewardExpectation (observation)
Calculate the estimated reward based on the action and stimuli

This contains parts that are task dependent
Parameters observation ({int | float | tuple})— The setof stimuli
Returns
 actionExpectations (array of floats) — The expected rewards for each action
« stimuli (/ist of floats) — The processed observations

* activeStimuli (/ist of [0, 1] mapping to [False, True]) — A list of the stimuli that were
or were not present

storeState ()
Stores the state of all the important variables so that they can be accessed later

updateExpectations (dirichletVals)
updateModel (delta, action, stimuli, stimuliFilter)
Parameters
* delta (float) - The difference between the reward and the expected reward
* action (int)— The action chosen by the model in this trialstep
e stimuli (Iist of float)-— The weights of the different stimuli in this trialstep

* stimuliFilter (1ist of bool)— A listdescribing if a stimulus cue is present
in this trialstep

6.7.

model package n

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

pyHPDM Documentation, Release 0.9.9

6.7.2.5 model.BPE module

Author Dominic Hunt

class model.BPE.BPE (alpha=0.3, epsilon=0.1, dirichletlnit=1, validRewards=array([0, 1]),
**kwargs)
Bases: model.modelTemplate.Model

The Bayesian predictor model

Name
The name of the class used when recording what has been used.

Type string

Parameters
* alpha (float, optional)- Learning rate parameter

* epsilon (float, optional)— Noise parameter. The larger it is the less likely
the model is to choose the highest expected reward

* number_actions (integer, optional)- The maximum number of valid ac-
tions the model can expect to receive. Default 2.

* number_cues (integer, optional)-

The initial maximum number of stimuli the model can expect to receive. Default
1.

e number_critics (integer, optional) — The number of different reaction
learning sets. Default number_actions*number_cues

* validRewards (list, np.ndarray, optional) - The different reward val-
ues that can occur in the task. Default array ([0, 1])

* action_codes (dict with string or int as keys and int
values, optional) — A dictionary used to convert between the action refer-
ences used by the task or dataset and references used in the models to describe the
order in which the action information is stored.

e dirichletInit (float, optional)-The initial values for values of the dirich-
let distribution. Normally 0, 1/2 or 1. Default 1

* prior (array of floatsin [0, 1], optional) —Ignored in this case

e stimFunc (function, optional) — The function that transforms the stimulus
into a form the model can understand and a string to identify it later. Default is
blankStim

e rewFunc (function, optional)— The function that transforms the reward into
a form the model can understand. Default is blankRew

* decFunc (function, optional) - The function that takes the inter-
nal values of the model and turns them in to a decision. Default is
model.decision.discrete.weightProb

See also:
model . BP This model is heavily based on that one

actStimMerge (dirichletVals, stimuli)

actorStimulusProbs ()
Calculates in the model-appropriate way the probability of each action.

Returns probabilities — The probabilities associated with the action choices

72 Chapter 6. Documentation

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float

pyHPDM Documentation, Release 0.9.9

Return type 1D ndArray of floats
calcActExpectations (dirichletVals)

calcProbabilities (actionValues)
Calculate the probabilities associated with the actions

Parameters actionValues (1D ndArray of floats)-—
Returns probArray — The probabilities associated with the actionValues
Return type 1D ndArray of floats

delta (reward, expectation, action, stimuli)
Calculates the comparison between the reward and the expectation

Parameters

* reward (float)— The reward value

* expectation (float)— The expected reward value

e action (int) - The chosen action

e stimuli ({int | float | tuple | None})— The stimuli received
Returns
Return type delta

returnTaskState ()
Returns all the relevant data for this model

Returns results — The dictionary contains a series of keys including Name, Probabilities,
Actions and Events.

Return type dict

rewardExpectation (observation)
Calculate the estimated reward based on the action and stimuli

This contains parts that are task dependent
Parameters observation ({int | float | tuple})— The setof stimuli
Returns
« actionExpectations (array of floats) — The expected rewards for each action
* stimuli (/ist of floats) — The processed observations

« activeStimuli (/ist of [0, 1] mapping to [False, True]) — A list of the stimuli that were
or were not present

storeState ()
Stores the state of all the important variables so that they can be accessed later

updateExpectations (dirichletVals)
updateModel (delta, action, stimuli, stimuliFilter)
Parameters
e delta (float)— The difference between the reward and the expected reward
* action (int)— The action chosen by the model in this trialstep
e stimuli (1ist of float)- The weights of the different stimuli in this trialstep

e stimuliFilter (1ist of bool)— A listdescribing if a stimulus cue is present
in this trialstep

6.7.

model package 73

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

pyHPDM Documentation, Release 0.9.9

6.7.2.6 model.BPV module

Author Dominic Hunt

class model.BPV.BPV (alpha=0.3, dirichletlnit=1, validRewards=array([0, 1]), **kwargs)

Bases: model.modelTemplate.Model
The Bayesian predictor model

Name
The name of the class used when recording what has been used.

Type string

Parameters

* alpha (float, optional)- Learning rate parameter

e number_actions (integer, optional)- The maximum number of valid ac-

tions the model can expect to receive. Default 2.

* number_cues (integer, optional)-

The initial maximum number of stimuli the model can expect to receive. Default

1.

* number_critics (integer, optional) — The number of different reaction

learning sets. Default number_actions*number_cues

* validRewards (1ist, np.ndarray, optional)- The different reward val-

ues that can occur in the task. Default array ([0, 11)

* action_codes (dict with string or int as keys and int
values, optional) — A dictionary used to convert between the action refer-
ences used by the task or dataset and references used in the models to describe the

order in which the action information is stored.

e dirichletInit (float, optional)-The initial values for values of the dirich-

let distribution. Normally 0, 1/2 or 1. Default 1

* prior (array of floatsin [0, 17, optional) — Ignored in this case

e stimFunc (function, optional) — The function that transforms the stimulus

into a form the model can understand and a string to identify it later.

blankStim

Default is

e rewFunc (function, optional)— The function that transforms the reward into

a form the model can understand. Default is blankRew

e decFunc (function, optional) — The function that takes

nal values of the model and turns them in to a decision.
model.decision.discrete.weightProb
actStimMerge (dirichletVals, stimuli)

actorStimulusProbs ()
Calculates in the model-appropriate way the probability of each action.

Returns probabilities — The probabilities associated with the action choices
Return type 1D np.ndarray of floats
calcActExpectations (dirichletVals)

calcProbabilities (actionValues)
Calculate the probabilities associated with the actions

Parameters actionValues (1D np.ndarray of floats)-—

Returns probArray — The probabilities associated with the actionValues

the inter-
Default is

74

Chapter 6.

Documentation

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float

pyHPDM Documentation, Release 0.9.9

Return type 1D np.ndarray of floats

delta (reward, expectation, action, stimuli)
Calculates the comparison between the reward and the expectation

Parameters

e reward (float)— The reward value

* expectation (float)— The expected reward value

e action (int)— The chosen action

e stimuli ({int | float | tuple | None})- The stimuli received
Returns
Return type delta

returnTaskState ()
Returns all the relevant data for this model

Returns results — The dictionary contains a series of keys including Name, Probabilities,
Actions and Events.

Return type dict

rewardExpectation (observation)
Calculate the estimated reward based on the action and stimuli

This contains parts that are task dependent
Parameters observation ({int | float | tuple})— The setof stimuli
Returns
 actionExpectations (array of floats) — The expected rewards for each action
« stimuli (/ist of floats) — The processed observations

* activeStimuli (/ist of [0, 1] mapping to [False, True]) — A list of the stimuli that were
or were not present

storeState ()
Stores the state of all the important variables so that they can be accessed later

updateExpectations (dirichletVals)
updateModel (delta, action, stimuli, stimuliFilter)
Parameters
* delta (float) - The difference between the reward and the expected reward
* action (int)— The action chosen by the model in this trialstep
e stimuli (Iist of float)-— The weights of the different stimuli in this trialstep

* stimuliFilter (1ist of bool)— A listdescribing if a stimulus cue is present
in this trialstep

6.7.2.7 model.OpAL module

Author Dominic Hunt

Reference Based on the paper Opponent actor learning (OpAL): Modeling interactive effects of
striatal dopamine on reinforcement learning and choice incentive. Collins, A. G. E., & Frank,
M. J. (2014). Psychological Review, 121(3), 337-66. doi:10.1037/a0037015

6.7. model package 75

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

pyHPDM Documentation, Release 0.9.9

class model.OpAL.OpAL (alpha=0.3, beta=4, rho=0, invBeta=None, alphaCrit=None, be-

taGo=None, betaNogo=None, alphaGo=None, alphaNogo=None, al-
phaGoDiff=None, alphaNogoDiff=None, alphaGoNogoDiff=None, ex-
pect=None, expectGo=None, **kwargs)

Bases: model.modelTemplate.Model

The Opponent actor learning model

Name
The name of the class used when recording what has been used.

Type string

currAction
The current action chosen by the model. Used to pass participant action to model when fitting

Type int

Parameters
* alpha (float, optional)-— Learning rate parameter, used as either the

* alphaGoNogoDiff (float, optional) — The difference between alphaGo
and alphaNogo. Default is None. If not None will overwrite alphaNogo ay =
g — Qf

* alphaCrit (float, optional)— The critic learning rate. Default is alpha

* alphaGo (float, optional) - Learning rate parameter for Go, the positive part
of the actor learning Default is alpha

* alphaNogo (float, optional)-—Learning rate parameter for Nogo, the negative
part of the actor learning Default is alpha

* alphaGoDiff (float, optional) - The difference between alphaCrit and
alphaGo. The default is None If not None and alphaNogoDiff is also not None,
it will overwrite the alphaGo parameter ag = a¢ + «

* alphaNogoDiff (float, optional) — The difference between alphaCrit
and alphaNogo. The default is None If not None and alphaGoDiff is also not
None, it will overwrite the alphaNogo parameter ay = a¢c + «

* beta (float, optional)- Sensitivity parameter for probabilities. Also known as
an exploration- exploitation parameter. Defined as /3 in the paper

* invBeta (float, optional)- Inverse of sensitivity parameter for the probabili-

: 1
ties. Defined as s Default 0.2

* rho (float, optional)- The asymmetry between the actor weights. p = g —

B=pn+P

* number_actions (integer, optional)- The maximum number of valid ac-
tions the model can expect to receive. Default 2.

* number_cues (integer, optional)-

The initial maximum number of stimuli the model can expect to receive. Default
1.

* number_critics (integer, optional) — The number of different reaction
learning sets. Default number_actions*number_cues

* action_codes (dict with string or int as keys and int
values, optional) — A dictionary used to convert between the action refer-
ences used by the task or dataset and references used in the models to describe the
order in which the action information is stored.

76

Chapter 6. Documentation

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

pyHPDM Documentation, Release 0.9.9

* prior (array of floats in [0, 1], optional) — The prior probability of of the states
being the correct one. Default ones ((number_actions, number_cues)) /
number_critics)

e expect (array of floats, optional) — The initialisation of the the
expected reward. Default ones ((number_actions, number_cues)) /
number_critics

* expectGo (array of floats, optional) - The initialisation of the the ex-
pected go and nogo. Default ones ((number_actions, number_cues)) /
number_critics

e stimFunc (function, optional)— The function that transforms the stimulus
into a form the model can understand and a string to identify it later. Default is
blankStim

* rewFunc (function, optional)— The function that transforms the reward into
a form the model can understand. Default is blankRew

e decFunc (function, optional) - The function that takes the inter-
nal values of the model and turns them in to a decision. Default is
model.decision.discrete.weightProb

Notes

Actor: The chosen action is updated with
5d,t =Tt — Ed,t
Egt+1=FEqt+agdq:
Critic: The chosen action is updated with
Gair1 =Gar +acGaiba
Nd,t+1 = Nd,t - OéNNd,t5d,t
Probabilities: The probabilities for all actions are calculated using

Age=(1+p)Gar— (1 —p)Nay
eBAdt

actorStimulusProbs ()
Calculates in the model-appropriate way the probability of each action.

Returns probabilities — The probabilities associated with the action choices
Return type 1D ndArray of floats

calcProbabilities (actionValues)
Calculate the probabilities associated with the actions

Parameters actionValues (1D ndArray of floats)-
Returns probArray — The probabilities associated with the actionValues
Return type 1D ndArray of floats

delta (reward, expectation, action, stimuli)
Calculates the comparison between the reward and the expectation

Parameters
e reward (float)— The reward value

* expectation (float) - The expected reward value

6.7. model package 77

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

pyHPDM Documentation, Release 0.9.9

e action (int)— The chosen action

e stimuli ({int | float | tuple | None})- The stimuli received
Returns
Return type delta

returnTaskState ()
Returns all the relevant data for this model

Returns results — The dictionary contains a series of keys including Name, Probabilities,
Actions and Events.

Return type dict

rewardExpectation (observation)
Calculate the estimated reward based on the action and stimuli

This contains parts that are task dependent
Parameters observation ({int | float | tuple})- The setof stimuli
Returns
« actionExpectations (array of floats) — The expected rewards for each action
« stimuli (/ist of floats) — The processed observations

* activeStimuli (/ist of [0, 1] mapping to [False, True]) — A list of the stimuli that were
or were not present

storeState ()
Stores the state of all the important variables so that they can be accessed later

updateModel (delta, action, stimuli, stimuliFilter)
Parameters
* delta (f1oat) - The difference between the reward and the expected reward
* action (int)— The action chosen by the model in this trialstep
* stimuli (1ist of float)-The weights of the different stimuli in this trialstep

* stimuliFilter (1ist of bool)— Alistdescribing if a stimulus cue is present
in this trialstep

6.7.2.8 model.OpALE module

Author Dominic Hunt

Reference Based on the paper Opponent actor learning (OpAL): Modeling interactive effects of
striatal dopamine on reinforcement learning and choice incentive. Collins, A. G. E., & Frank,
M. J. (2014). Psychological Review, 121(3), 337-66. doi:10.1037/a0037015

class model.OpALE.OpALE (alpha=0.3, epsilon=0.3, rho=0, alphaCrit=None, alphaGo=None,
alphaNogo=None, alphaGoDiff=None, alphaNogoDiff=None, al-

phaGoNogoDiff=None, expect=None, expectGo=None, **kwargs)
Bases: model.modelTemplate.Model

The Opponent actor learning model

Name
The name of the class used when recording what has been used.

Type string

currAction
The current action chosen by the model. Used to pass participant action to model when fitting

78 Chapter 6. Documentation

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

pyHPDM Documentation, Release 0.9.9

Type int

Parameters
* alpha (float, optional)— Learning rate parameter, used as either the

* alphaGoNogoDiff (float, optional) — The difference between alphaGo
and alphaNogo. Default is None. If not None will overwrite alphaNogo ay =
ag —ag

* alphaCrit (float, optional)— The critic learning rate. Default is alpha

* alphaGo (float, optional) - Learning rate parameter for Go, the positive part
of the actor learning Default is alpha

* alphaNogo (float, optional)-—Learning rate parameter for Nogo, the negative
part of the actor learning Default is alpha

* alphaGoDiff (float, optional) - The difference between alphaCrit and
alphaGo. The default is None If not None and alphaNogoDiff is also not None,
it will overwrite the alphaGo parameter ag = a¢ + «

* alphaNogoDiff (float, optional) — The difference between alphaCrit
and alphaNogo. The default is None If not None and alphaGoDiff is also not
None, it will overwrite the alphaNogo parameter ay = ac + «

* epsilon (float, optional) — Sensitivity parameter for probabilities. Also
known as an exploration- exploitation parameter. Defined as € in the paper

* rho (float, optional)- The asymmetry between the actor weights. p = eg —
€E=€N t+ €

e number_actions (integer, optional)- The maximum number of valid ac-
tions the model can expect to receive. Default 2.

* number_cues (integer, optional)-

The initial maximum number of stimuli the model can expect to receive. Default
1.

* number_critics (integer, optional) — The number of different reaction
learning sets. Default number_actions*number_cues

* action_codes (dict with string or int as keys and int
values, optional) — A dictionary used to convert between the action refer-
ences used by the task or dataset and references used in the models to describe the
order in which the action information is stored.

* prior (array of floats in [0, 1], optional) — The prior probability of of the states
being the correct one. Default ones ((number_actions, number_cues)) /
number_critics)

* expect (array of floats, optional) — The initialisation of the the
expected reward. Default ones ((number_actions, number_cues)) /
number_critics

* expectGo (array of floats, optional) — The initialisation of the the ex-
pected go and nogo. Default ones ((number_actions, number_cues)) /
number_critics

e stimFunc (function, optional) — The function that transforms the stimulus
into a form the model can understand and a string to identify it later. Default is
blankStim

e rewFunc (function, optional)— The function that transforms the reward into
a form the model can understand. Default is blankRew

6.7. model package 79

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

pyHPDM Documentation, Release 0.9.9

e decFunc (function, optional) - The function that takes the inter-
nal values of the model and turns them in to a decision. Default is
model.decision.discrete.weightProb

Notes

Actor: The chosen action is updated with
5d,t =Tt — Ed,t
Eqtv1=FEqt+agdq:

Critic: The chosen action is updated with

Gat+1=Gar +0ocGardas
Ngt41=Ng+ —oanNgdq+

Probabilities: The probabilities for all actions are calculated using

Age=1+p)Gar— (1 —p)Nay

actorStimulusProbs ()
Calculates in the model-appropriate way the probability of each action.

Returns probabilities — The probabilities associated with the action choices
Return type 1D ndArray of floats

calcProbabilities (actionValues)
Calculate the probabilities associated with the actions

Parameters actionValues (1D ndArray of floats)-
Returns probArray — The probabilities associated with the actionValues
Return type 1D ndArray of floats

delta (reward, expectation, action, stimuli)
Calculates the comparison between the reward and the expectation

Parameters

e reward (float)— The reward value

* expectation (float) - The expected reward value

e action (int)— The chosen action

e stimuli ({int | float | tuple | None})- The stimuli received
Returns
Return type delta

returnTaskState ()
Returns all the relevant data for this model

Returns results — The dictionary contains a series of keys including Name, Probabilities,
Actions and Events.

Return type dict

rewardExpectation (observation)
Calculate the estimated reward based on the action and stimuli

This contains parts that are task dependent

80 Chapter 6. Documentation

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict

pyHPDM Documentation, Release 0.9.9

Parameters observation ({int | float | tuple})- The setof stimuli
Returns
« actionExpectations (array of floats) — The expected rewards for each action
o stimuli (/ist of floats) — The processed observations

* activeStimuli (/ist of [0, 1] mapping to [False, True]) — A list of the stimuli that were
or were not present

storeState ()
Stores the state of all the important variables so that they can be accessed later

updateModel (delta, action, stimuli, stimuliFilter)
Parameters
* delta (float)— The difference between the reward and the expected reward
e action (int)— The action chosen by the model in this trialstep
e stimuli (I1ist of float)-— The weights of the different stimuli in this trialstep

* stimuliFilter (1ist of bool)— A listdescribing if a stimulus cue is present
in this trialstep

6.7.2.9 model.OpALS module

Author Dominic Hunt

Reference Based on the paper Opponent actor learning (OpAL): Modeling interactive effects of
striatal dopamine on reinforcement learning and choice incentive. Collins, A. G. E., & Frank,
M. J. (2014). Psychological Review, 121(3), 337-66. doi:10.1037/a0037015

class model.OpALS.OpALS (alpha=0.3, beta=4, rho=0, saturateVal=10, invBeta=None, al-
phaCrit=None, betaGo=None, betaNogo=None, alphaGo=None,
alphaNogo=None, alphaGoDiff=None, alphaNogoDiff=None, al-

phaGoNogoDiff=None, expect=None, expectGo=None, **kwargs)
Bases: model.modelTemplate.Model

The Opponent actor learning model modified to have saturation values
The saturation values are the same for the actor and critic learners

Name
The name of the class used when recording what has been used.

Type string

currAction
The current action chosen by the model. Used to pass participant action to model when fitting

Type int

Parameters
* alpha (float, optional)- Learning rate parameter, used as either the

* alphaGoNogoDiff (float, optional) — The difference between alphaGo
and alphaNogo. Default is None. If not None will overwrite alphaNogo ay =
ag — ag

* alphaCrit (float, optional)— The critic learning rate. Default is alpha

* alphaGo (float, optional) - Learning rate parameter for Go, the positive part
of the actor learning Default is alpha

* alphaNogo (float, optional)-Learning rate parameter for Nogo, the negative
part of the actor learning Default is alpha

6.7. model package 81

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

pyHPDM Documentation, Release 0.9.9

* alphaGoDiff (float, optional) — The difference between alphaCrit and
alphaGo. The default is None If not None and alphaNogoDi ff is also not None,
it will overwrite the alphaGo parameter ag = a¢ + o

* alphaNogoDiff (float, optional) — The difference between alphaCrit
and alphaNogo. The default is None If not None and alphaGoDiff is also not
None, it will overwrite the alphaNogo parameter ay = ac + o

* beta(float, optional)-— Sensitivity parameter for probabilities. Also known as
an exploration- exploitation parameter. Defined as (3 in the paper

* invBeta (float, optional)— Inverse of sensitivity parameter for the probabili-

. 1
ties. Defined as T Default 0.2

e rho (float, optional)- The asymmetry between the actor weights. p = g —
B=pPn+p

* number_actions (integer, optional)- The maximum number of valid ac-
tions the model can expect to receive. Default 2.

* number_cues (integer, optional)-

The initial maximum number of stimuli the model can expect to receive. Default
1.

e number_critics (integer, optional) — The number of different reaction
learning sets. Default number_actions*number_cues

* action_codes (dict with string or int as keys and int
values, optional) — A dictionary used to convert between the action refer-
ences used by the task or dataset and references used in the models to describe the
order in which the action information is stored.

* prior (array of floats in [0, 1], optional) — The prior probability of of the states
being the correct one. Default ones ((number_actions, number_cues)) /
number_critics)

* expect (array of floats, optional) — The initialisation of the the
expected reward. Default ones ((number_actions, number_cues)) /
number_critics

* expectGo (array of floats, optional) - The initialisation of the the ex-
pected go and nogo. Default ones ((number_actions, number_cues)) /
number_critics

* saturateVal (float, optional)- The saturation value for the model. Default
is 10

e stimFunc (function, optional) — The function that transforms the stimulus
into a form the model can understand and a string to identify it later. Default is
blankStim

e rewFunc (function, optional)— The function that transforms the reward into
a form the model can understand. Default is blankRew

* decFunc (function, optional) — The function that takes the inter-
nal values of the model and turns them in to a decision. Default is
model.decision.discrete.weightProb

Notes

Actor: The chosen action is updated with

5d,t =Tt — Ed,t

Ey
Eit11=FEq1+ agdg(l — Tt)

82 Chapter 6. Documentation

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

pyHPDM Documentation, Release 0.9.9

Critic: The chosen action is updated with

G
Gai1=Gar+0acGg0q:(1 — g,’t)

N,
Nai+1 = Ngt — anNg6a,.(1 — %)

Probabilities: The probabilities for all actions are calculated using
Agp = (1+p)Gas — (1= p)Nay
P A

-ldt -
> BA
> jep €77

actorStimulusProbs ()
Calculates in the model-appropriate way the probability of each action.

Returns probabilities — The probabilities associated with the action choices
Return type 1D ndArray of floats

calcProbabilities (actionValues)
Calculate the probabilities associated with the actions

Parameters actionValues (1D ndArray of floats)-
Returns probArray — The probabilities associated with the actionValues
Return type 1D ndArray of floats

delta (reward, expectation, action, stimuli)
Calculates the comparison between the reward and the expectation

Parameters

e reward (float)— The reward value

* expectation (float) - The expected reward value

e action (int)— The chosen action

e stimuli ({int | float | tuple | None})- The stimuli received
Returns
Return type delta

returnTaskState ()
Returns all the relevant data for this model

Returns results — The dictionary contains a series of keys including Name, Probabilities,
Actions and Events.

Return type dict

rewardExpectation (observation)
Calculate the estimated reward based on the action and stimuli

This contains parts that are task dependent
Parameters observation ({int | float | tuple})- The setof stimuli
Returns
« actionExpectations (array of floats) — The expected rewards for each action
o stimuli (list of floats) — The processed observations

* activeStimuli (/ist of [0, 1] mapping to [False, True]) — A list of the stimuli that were
or were not present

6.7. model package 83

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict

pyHPDM Documentation, Release 0.9.9

storeState ()
Stores the state of all the important variables so that they can be accessed later

updateModel (delta, action, stimuli, stimuliFilter)
Parameters
* delta (float)— The difference between the reward and the expected reward
* action (int)— The action chosen by the model in this trialstep
e stimuli (1ist of float)- The weights of the different stimuli in this trialstep

e stimuliFilter (1ist of bool)— Alistdescribing if a stimulus cue is present
in this trialstep

6.7.2.10 model.OpALSE module

Author Dominic Hunt

Reference Based on the paper Opponent actor learning (OpAL): Modeling interactive effects of
striatal dopamine on reinforcement learning and choice incentive. Collins, A. G. E., & Frank,
M. J. (2014). Psychological Review, 121(3), 337-66. doi:10.1037/a0037015

class model.OpALSE.OpALSE (alpha=0.3, epsilon=0.3, rho=0, saturateVal=10, alphaCrit=None,
alphaGo=None, alphaNogo=None, alphaGoDiff=None, al-
phaNogoDiff=None, alphaGoNogoDiff=None, expect=None,

expectGo=None, **kwargs)
Bases: model.modelTemplate.Model

The Opponent actor learning model modified to have saturation values
The saturation values are the same for the actor and critic learners

Name
The name of the class used when recording what has been used.

Type string

currAction
The current action chosen by the model. Used to pass participant action to model when fitting

Type int

Parameters
* alpha (float, optional)-— Learning rate parameter, used as either the

* alphaGoNogoDiff (float, optional) — The difference between alphaGo
and alphaNogo. Default is None. If not None will overwrite alphaNogo ay =
ag —as

* alphaCrit (float, optional)— The critic learning rate. Default is alpha

* alphaGo (float, optional) - Learning rate parameter for Go, the positive part
of the actor learning Default is alpha

* alphaNogo (float, optional)-Learning rate parameter for Nogo, the negative
part of the actor learning Default is alpha

* alphaGoDiff (float, optional) - The difference between alphaCrit and
alphaGo. The default is None If not None and alphaNogoDiff is also not None,
it will overwrite the alphaGo parameter ag = a¢ + «

* alphaNogoDiff (float, optional) — The difference between alphaCrit
and alphaNogo. The default is None If not None and alphaGoDiff is also not
None, it will overwrite the alphaNogo parameter ay = a¢c + «

84 Chapter 6. Documentation

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

pyHPDM Documentation, Release 0.9.9

* epsilon (float, optional) — Sensitivity parameter for probabilities. Also
known as an exploration- exploitation parameter. Defined as € in the paper

* rho (float, optional)- The asymmetry between the actor weights. p = eg —
€E=€N t+ €

e number_actions (integer, optional)- The maximum number of valid ac-
tions the model can expect to receive. Default 2.

* number_cues (integer, optional)-

The initial maximum number of stimuli the model can expect to receive. Default
1.

* number_critics (integer, optional) — The number of different reaction
learning sets. Default number_actions*number_cues

* action_codes (dict with string or int as keys and int
values, optional) — A dictionary used to convert between the action refer-
ences used by the task or dataset and references used in the models to describe the
order in which the action information is stored.

* prior (array of floats in [0, 1], optional) — The prior probability of of the states
being the correct one. Default ones ((number_actions, number_cues)) /
number_critics)

* expect (array of floats, optional) — The initialisation of the the
expected reward. Default ones ((number_actions, number_cues)) /
number_critics

* expectGo (array of floats, optional) — The initialisation of the the ex-
pected go and nogo. Default ones ((number_actions, number_cues)) /
number_critics

* saturateVal (float, optional)- The saturation value for the model. Default
is 10

e stimFunc (function, optional) — The function that transforms the stimulus
into a form the model can understand and a string to identify it later. Default is
blankStim

* rewFunc (function, optional)— The function that transforms the reward into
a form the model can understand. Default is blankRew

e decFunc (function, optional) - The function that takes the inter-
nal values of the model and turns them in to a decision. Default is
model.decision.discrete.weightProb

Notes

Actor: The chosen action is updated with

5d,t =Tt — Ed,t

Eii41 =FEq; +apdq(l— Eg’t)
Critic: The chosen action is updated with
Gai+1 = Gar + acGq104.4(1 — %)
Nd,t+1 = Na;s — aNNd,t5d,t(1 - %)

6.7. model package 85

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

pyHPDM Documentation, Release 0.9.9

Probabilities: The probabilities for all actions are calculated using

Agr =1+ p)Gar — (1 — p)Nay

P eGAd,t
d,t = A
Dgep €

actorStimulusProbs ()
Calculates in the model-appropriate way the probability of each action.

Returns probabilities — The probabilities associated with the action choices
Return type 1D ndArray of floats

calcProbabilities (actionValues)
Calculate the probabilities associated with the actions

Parameters actionValues (1D ndArray of floats)-—
Returns probArray — The probabilities associated with the actionValues
Return type 1D ndArray of floats

delta (reward, expectation, action, stimuli)
Calculates the comparison between the reward and the expectation

Parameters

e reward (float)— The reward value

* expectation (float) - The expected reward value

e action (int)— The chosen action

e stimuli ({int | float | tuple | None})- The stimuli received
Returns
Return type delta

returnTaskState ()
Returns all the relevant data for this model

Returns results — The dictionary contains a series of keys including Name, Probabilities,
Actions and Events.

Return type dict

rewardExpectation (observation)
Calculate the estimated reward based on the action and stimuli

This contains parts that are task dependent
Parameters observation ({int | float | tuple})— The setof stimuli
Returns
« actionExpectations (array of floats) — The expected rewards for each action
« stimuli (/ist of floats) — The processed observations

* activeStimuli (/ist of [0, 1] mapping to [False, True]) — A list of the stimuli that were
or were not present

storeState ()
Stores the state of all the important variables so that they can be accessed later

updateModel (delta, action, stimuli, stimuliFilter)
Parameters

* delta (f1