pyHPDM Documentation
Release 0.9.9

Dominic Hunt

Apr 19, 2020

Contents

Prerequisites
Installation
Usage
Testing

License

Documentation
6.1 simulation module
6.2 dataFitting module
6.3 data module
6.4 taskGenerator module
6.5 tasks package
Submodules
6.5.1.1
6.5.1.2
6.5.1.3
6.5.1.4
6.5.1.5
6.5.1.6
6.5.1.7
6.5.1.8
6.5.1.9

6.5.1

6.7.1

6.7.2

tasks.balltask module
tasks.basic module
tasks.beads module
tasks.decks module
tasks.taskTemplate module
tasks.pavlov module
tasks.probSelect module
tasks.probStim module
tasks.weather module
6.6 modelGenerator module
6.7 model package
Subpackages
6.7.1.1
Submodules
6.7.2.1
6.7.2.2
6.7.2.3
6.7.2.4
6.7.2.5
6.7.2.6
6.7.2.7
6.7.2.8
6.7.2.9
6.7.2.10

model.decision package

model. ACBasic module
model. ACE module

model. ACES module
model.BP module

model.BPE module
model.BPV module
model.OpAL module

model.OpALE module
model.OpALS module
model.OpALSE module

6.8

6.9

6.7.2.11 model.OpAL_Hmodule
6.7.2.12 model.OpAL_HEmodule
6.7.2.13 model.modelTemplate module
6.7.2.14 model.qLearnmodule o L oo
6.7.2.15 model.qLearn2 module oo
6.7.2.16 model.qLearn2Emodule oL o
6.7.2.17 model.qLearnCorrmodule
6.7.2.18 model.qLearnEmodule o o
6.7.2.19 model.qLearnECorrmodule oL o000
6.7.2.20 model.qlearnFmodule
6.7.2.21 model.qlearnKmodule L
6.7.2.22 model.qLearnMetamodule Lo oL
6.7.2.23 model.randomBiasmodule o oL oo
6.7.2.24 model.tdOmodule L o
6.7.2.25 model.tdEmoduleo
6.7.2.26 model.tdrmodule
fitAlgs package L
6.8.1 Submodules e

6.8.1.1
6.8.1.2
6.8.1.3
6.8.1.4
6.8.1.5
6.8.1.6
6.8.1.7
6.8.1.8

fitAlgs.basinhoppingmodule L 0.
fitAlgs.boundFuncmodule o000
fitAlgs.evolutionary module oL
fitAlgs.fitAlgmodule
fitAlgs.fitSimsmodule L
fitAlgs.leastsgmodule L
fitAlgs.minimizemodule oL oo
fitAlgs.qualityFuncmodule Lo oo

outputting module L e
6.10 utils module

7 Indices and tables

Python Module Index

Index

pyHPDM Documentation, Release 0.9.9

python Human Probabilistic Decision-Modelling (pyHPDM) is a framework for modelling and fitting the re-
sponses of people to probabilistic decision making tasks.

Contents 1

pyHPDM Documentation, Release 0.9.9

2 Contents

cHAPTER 1

Prerequisites

This code has been tested using Python 2.7. Apart from the standard Python libraries it also depends on the
SciPy librariesand a few others listed in requirements.txt. For those installing Python for the first time I
would recommend the Anaconda Python distribution.

http://www.scipy.org/
https://store.continuum.io/cshop/anaconda/

pyHPDM Documentation, Release 0.9.9

4 Chapter 1. Prerequisites

CHAPTER 2

Installation

For now this is just Python code that you download and use, not a package.

pyHPDM Documentation, Release 0.9.9

6 Chapter 2. Installation

CHAPTER 3

Usage

The framework has until now either been run with a run script or live in a command-line (or jupyter notebook).

A task simulation can be simply created by running simulation.simulation (). Equally, for fitting partic-
ipant data, the function is dataFitting.data_fitting. For now, no example data has been provided.

More complex example running scripts can be found in . /runScripts/. Here, a number of scripts have been
created as templates: runScript_sim.py for simulating the probSelect task and runScript_fit.py
for fitting the data generated from runScript_sim.py. A visual display of the interactions in one of these
scripts will soon be created.

A new method of passing in the fitting or simulation configuration is to use a YAML configuration file. This
is done, for both simulations and data fitting, using the function start.run_script For example, to run
the YAML configuration equivalent to the runScript_sim.py from a command line would be :start.
run_script ('./runScripts/runScripts_sim.yaml').

http://jupyter.org/

pyHPDM Documentation, Release 0.9.9

8 Chapter 3. Usage

cHAPTER 4

Testing

Testing is done using pytest.

https://pytest.org

pyHPDM Documentation, Release 0.9.9

10 Chapter 4. Testing

CHAPTER B

License

This project is licenced under the MIT license.

11

https://choosealicense.com/licenses/mit/

pyHPDM Documentation, Release 0.9.9

12 Chapter 5. License

CHAPTER O

Documentation

The documentation can be found on readthedocs or in . /doc/_build/html, with the top level file being
index.html

To update the documentation you will need to install Sphinx and a set of extensions. The list of extensions can be
found in . /doc/conf . py. To update the documentation follow the instruction in . /doc/readme .md

Contents:

6.1 simulation module

Author Dominic Hunt

simulation.csv_model_simulation (modelData, simID, file_name_generator)
Saves the fitting data to a CSV file

Parameters
e modelData (dict) — The data from the model
* simID (string)— The identifier for the simulation

e file_name_ generator (function)- Creates a new file with the name <handle>
and the extension <extension>. It takes two string parameters: (handle, extension)
and returns one £ileName string

simulation.log_simulation_parameters (task_parameters, model_parameters, simID)
Writes to the log the description and the label of the task and model

Parameters
* task_parameters (dict)— The task parameters
* model_parameters (dict)— The model parameters
* simID (string)— The identifier for each simulation.

See also:

recordSimParams () Records these parameters for later use

13

https://pyhpdm.readthedocs.io
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

pyHPDM Documentation, Release 0.9.9

simulation.record_simulation (file_name_generator, task_data, model_data, simID,

pickle=False)
Records the data from an task-model run. Creates a pickled version

Parameters

* file_name_generator (function) - Creates a new file with the name <handle>
and the extension <extension>. It takes two string parameters: (handle, extension)
and returns one £ileName string

* task_data (dict)— The data from the task
¢ model_data (dict)— The data from the model

* simID (str)— The label identifying the simulation

pickle (bool, optional) - If true the data for each model, task and participant
is recorded. Default is False

See also:

picklelog () records the picked data

simulation.run (task_name="Basic’, task_changing_properties=None,
task_constant_properties=None, model_name="QLearn’,
model_changing_properties=None, model_constant_properties=None,

model_changing_properties_repetition=1, label=None, config_file=None, out-
put_path=None, pickle=False, min_log_level="INFO’, numpy_error_level="log’)
A framework for letting models interact with tasks and record the data

Parameters

* task_name (string)— The name of the file where a tasks.taskTemplate.Task class
can be found. Default Basic

* task_changing properties (dictionary of floats or 1lists of
floats) — Parameters are the options that you are or are likely to change across task
instances. When a parameter contains a list, an instance of the task will be created for
every combination of this parameter with all the others. Default None

* task_constant_properties (dictionary of float, string or
binary valued elements)— These contain all the the task options that describe
the task being studied but do not vary across task instances. Default None

* model_name (string)— The name of the file where a model.modelTemplate.Model
class can be found. Default QLearn

* model_changing_properties (dictionary containing floats or
lists of floats, optional) - Parameters are the options that you are or are
likely to change across model instances. When a parameter contains a list, an instance
of the model will be created for every combination of this parameter with all the others.
Default None

* model_constant_properties (dictionary of float, string or
binary valued elements, optional) — These contain all the the model
options that define the version of the model being studied. Default None

* model_changing properties_repetition (int, optional) — The
number of times each parameter combination is repeated.

* config file (string, optional) - The file name and path of a . yaml con-
figuration file. Overrides all other parameters if found. Default None

* output_path (string, optional)-— The path that will be used for the run out-
put. Default None

14 Chapter 6. Documentation

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

pyHPDM Documentation, Release 0.9.9

* pickle (bool, optional) - If true the data for each model, task and participant
is recorded. Default is False

* label (string, optional)— The label for the simulation. Default None, which
means nothing will be saved

* min_log_level (str, optional)— Defines the level of the log from (DEBUG,
INFO, WARNING, ERROR, CRITICAL). Default INFO

* numpy_error_level ({'log', 'raise'}) — Defines the response to numpy
errors. Default 10g. See numpy.seterr

See also:

tasks.taskTemplate (), model.modelTemplate ()

6.2 dataFitting module

Author Dominic Hunt

exception dataFitting.LengthError
Bases: Exception

exception dataFitting.OrderError
Bases: Exception

dataFitting.fit_record (participant_fits, file_name_generator)
Returns the participant fits summary as a csv file

Parameters
* participant_fits (dict)— A summary of the recovered parameters

* file_name_generator (function)- Creates a new file with the name <handle>
and the extension <extension>. It takes two string parameters: (handle, extension)
and returns one £ileName string

dataFitting.log_fitting_parameters (fir_info)
Records and outputs to the log the parameters associated with the fitting algorithms

Parameters £it_info (dict)— The details of the fitting

dataFitting.log_model_fitted_parameters (model_fit_variables, model_parameters,
fit_quality, participant_name)
Logs the model and task parameters that used as initial fitting conditions

Parameters

* model_fit_variables (dict) - The model parameters that have been fitted over
and varied.

* model_parameters (dict)— The model parameters for the fitted model
* fit_quality (float) - The value of goodness of fit
* participant_name (int or string)- The identifier for each participant

dataFitting.log_model_ fitting parameters (model, model_fit_variables,

model_other_args)
Logs the model and task parameters that used as initial fitting conditions

Parameters
* model (string)— The name of the model

* model_fit_variables (dict) — The model parameters that will be fitted over
and varied.

6.2. dataFitting module 15

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict

pyHPDM Documentation, Release 0.9.9

* model_other_args (dict) — The other parameters used in the model whose at-
tributes have been modified by the user

dataFitting.record_fitting (fitting_data, label, participant, participant_model_variables, par-

ticipant_fits, file_name_generator, save_fitting_progress=False)
Records formatted versions of the fitting data

Parameters

 fitting data (dict, optional) — Dictionary of details of the different fits,
including an ordered dictionary containing the parameter values tested, in the order
they were tested, and a list of the fit qualities of these parameters.

* label (str)— The label used to identify the fit in the file names
* participant (dict) - The participant data

* participant_model_variables (dict of string) — A dictionary of
model settings whose values should vary from participant to participant based on the
values found in the imported participant data files. The key is the label given in the
participant data file, as a string, and the value is the associated label in the model, also
as a string.

* participant_fits (defaultdict of 1lists)- A dictionary to be filled with
the summary of the participant fits

* file_name_generator (function)— Creates a new file with the name <handle>
and the extension <extension>. It takes two string parameters: (handle, extension)
and returns one £ileName string

* save_fitting_ progress (bool, optional) — Specifies if the results from
each iteration of the fitting process should be returned. Default False

Returns participant_fits — A dictionary to be filled with the summary of the previous and cur-
rent participant fits

Return type defaultdict of lists

dataFitting.record _participant_f£it (participant, part_name, model_data, model_name,
fitting_data, partModelVars, participantFits, file-
NameGen=None, pickleData=False, saveFitting-

Progress=False, expData=None)
Record the data relevant to the participant fitting

Parameters
* participant (dict) - The participant data
* part_name (int or string)- The identifier for each participant
e model_data (dict)— The data from the model
* model_name (st r)— The label given to the model

» fitting data (dict) — Dictionary of details of the different fits, including an or-
dered dictionary containing the parameter values tested, in the order they were tested,
and a list of the fit qualities of these parameters

* partModelVars (dict of string)-— A dictionary of model settings whose val-
ues should vary from participant to participant based on the values found in the imported
participant data files. The key is the label given in the participant data file, as a string,
and the value is the associated label in the model, also as a string.

* participantFits (defaultdict of lists)— A dictionary to be filled with
the summary of the participant fits

e fileNameGen (function or None)-Creates a new file with the name <handle>
and the extension <extension>. It takes two string parameters: (handle, extension)
and returns one £ileName string. Default None

16 Chapter 6. Documentation

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None

pyHPDM Documentation, Release 0.9.9

pickleData (bool, optional)-Iftrue the data for each model, task and partic-
ipant is recorded. Default is False

saveFittingProgress (bool, optional)— Specifies if the results from each
iteration of the fitting process should be returned. Default False

expData (dict, optional)- The datafrom the task. Default None

Returns participantFits — A dictionary to be filled with the summary of the previous and cur-
rent participant fits

Return type defaultdict of lists

See also:

outputting.pickleLog () records the picked data

dataFitting.run (data_folder="/’, data_format="csv’, data_file_filter=None,

A framework for fitting models to data for tasks, along with recording the data associated with the fits.

data_file_terminal_ID=True, data_read_options=None, data_split_by=None,
data_group_by=None, data_extra_processing=None, model_name="QLearn’,
model_changing_properties=None, model_constant_properties=None, participan-
tID="Name’, participant_choices="Actions’, participant_rewards=’Rewards’,

model_fit_value="ActionProb’, fit_subset=None, task_stimuli=None,
participant_action_options=None, fit_method="Evolutionary’,
fit_method_args=None, fit_measure="-loge’, fit_measure_args=None,

fit_extra_measures=None, participant_varying_model_parameters=None, la-
bel=None, save_fitting_progress=False, config_file=None, output_path=None,
pickle=False, boundary_excess_cost_function=None, min_log_level="INFO’,
numpy_error_level="log’, fit_float_error_response_value=1e-100, calcu-
late_covariance=False)

Parameters

data_ folder (string or list of strings, optional) — The folder
where the data can be found. Default is the current folder.

data_format (string, optional)— The file type of the data, from mat, csv,
x1sx and pkl. Defaultis csv

data_file filter (callable, string, list of strings or
None, optional) — A function to process the file names or a list of possible
prefixes as strings or a single string. Default None, no file names removed

data_file terminal_ ID (bool, optional) - Is there an ID number at the
end of the filename? If not then a more general search will be performed. Default True

data_read_options (dict, optional)-The keyword arguments for the data
importing method chosen

data_split_by(string or list of strings, optional)-Ifmultiple
participant datasets are in one file sheet, this specifies the column or columns that can
distinguish and identify the rows for each participant. Default None

data_group_by (list of strings, optional) — A list of parts of file-
names that are repeated across participants, identifying all the files that should be
grouped together to form one participants data. The rest of the filename is assumed
to identify the participant. Default is None

data_extra_processing(callable, optional)— A function that modifies
the dictionary of data read for each participant in such that it is appropriate for fitting.
Default is None

model_name (string, optional) — The name of the file where a
model.modelTemplate.Model class can be found. Default QLearn

6.2. dataFitting module

17

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict

pyHPDM Documentation, Release 0.9.9

* model_changing_properties (dictionary with values of tuple
of two floats, optional)— Parameters are the options that you allow to vary
across model fits. Each model parameter is specified as a dict key. The value is a tu-
ple containing the upper and lower search bounds, e.g. alpha has the bounds (0, 1).
Default None

* model_constant_properties (dictionary of float, string or
binary valued elements, optional) — These contain all the the model
options that define the version of the model being studied. Default None

* participantID (str, optional)- The key (label) used to identify each partic-
ipant. Default Name

* participant_choices (string, optional) — The participant data key of
their action choices. Default 'Actions'

* participant_rewards (string, optional)-The participant datakey of the
participant reward data. Default 'Rewards'"'

* model_fit_value (string, optional) — The key to be compared in the
model data. Default 'ActionProb'

e fit_ subset (float ('Nan'), None, "rewarded", "unrewarded", "all"
or list of int, optional) — Describes which, if any, subset of trials will be used to evaluate
the performance of the model. This can either be described as a list of trial numbers or,
by passing - "all" for fitting all trials - f1oat ('Nan') or "unrewarded" for all

those trials whose feedback was float ('Nan') - "rewarded" for those who had
feedback that was not f1oat ('Nan') Default None, which means all trials will be
used.

* task_stimuli (list of strings or None, optional) - The keys con-
taining the observational parameters seen by the participant before taking a decision on
an action. Default None

* participant_action_options (string or list of strings or
None or one element list with a list, optional) — If a string or
list of strings these are treated as dict keys where the valid actions for each trial can be
found. If None then all trials will use all available actions. If the list contains one list
then it will be treated as a list of valid actions for each trialstep. Default 'None'

e fit_method (string, optional) - The fitting method to be used. The names
accepted are those of the modules in the folder fitAlgs containing a FitAlg class. Default
'evolutionary'

e fit_method_args (dict, optional)— A dictionary of arguments specific to
the fitting method. Default None

 fit_measure (string, optional)-The name of the function used to calculate
the quality of the fit. The value it returns provides the fitter with its fitting guide. Default
-loge

* fit_measure_args (dict, optional)— The parameters used to initialise fit-
Measure and extraFitMeasures. Default None

e fit_extra_measures (list of strings, optional) — List of fit mea-
sures not used to fit the model, but to provide more information. Any arguments needed
for these measures should be placed in fitMeasureArgs. Default None

* participant_varying model_ parameters (dict of string,
optional) — A dictionary of model settings whose values should vary from
participant to participant based on the values found in the imported participant data
files. The key is the label given in the participant data file, as a string, and the value is
the associated label in the model, also as a string. Default { }

* label (string, optional)— The label for the data fitting. Default None will
mean no data is saved to files.

18 Chapter 6. Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

pyHPDM Documentation, Release 0.9.9

* save_fitting_ progress (bool, optional) — Specifies if the results from
each iteration of the fitting process should be returned. Default False

* config file (string, optional)— The file name and path of a . yaml con-
figuration file. Overrides all other parameters if found. Default None

* output_path (string, optional)- The path that will be used for the run out-
put. Default None

* pickle (bool, optional) — If true the data for each model, and participant is
recorded. Defaultis False

* boundary_ excess_cost_function (str or callable returning a
function, optional)— The function is used to calculate the penalty for exceed-
ing the boundaries. Default is boundFunc.scalarBound ()

* min_log_level (str, optional) - Defines the level of the log from (DEBUG,
INFO, WARNING, ERROR, CRITICAL). Default INFO

* numpy_error_level ({'log', 'raise'}) — Defines the response to numpy
errors. Default 10g. See numpy.seterr

e fit_float_error_ response_value (float, optional) — If a floating
point error occurs when running a fit the fitter function will return a value for each
element of fpRespVal. Default is “‘1/1e100°

* calculate_covariance (bool, optional) — Is the covariance calculated.
Default False

See also:

modelGenerator () The model factory
outputting () The outputting functions
fitAlgs.fitAlg.FitAlg () General class for a method of fitting data
fitAlgs.fitSims.fitSim() General class for a method of simulating the fitting of data
data.Data () Dataimport class

dataFitting.xlsx_fitting_data (fitting_data, label, participant, file_name_generator)
Saves the fitting data to an XLSX file

Parameters

 fitting data (dict, optional) — Dictionary of details of the different fits,
including an ordered dictionary containing the parameter values tested, in the order
they were tested, and a list of the fit qualities of these parameters.

* label (str)— The label used to identify the fit in the file names
* participant (dict)— The participant data

*» file name_generator (function)- Creates a new file with the name <handle>
and the extension <extension>. It takes two string parameters: (handle, extension)
and returns one £ileName string

6.3 data module

This module allows for the importing of participant data for use in fitting
Author Dominic Hunt

class data.Data (participants, participantID="ID’, choices="actions’, feedbacks="feedbacks’, stim-

uli=None, action_options=None, process_data_function=None)
Bases: 1ist

6.3. data module 19

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list

pyHPDM Documentation, Release 0.9.9

extend (iterable)
Combines two Data instances into one

Parameters iterable (Data instance or list of participant dicts)

classmethod from_ csv (folder="./", file_name_filter=None, terminal_ID=True,
split_by=None, participantID=None, choices="actions’, feed-
backs="feedbacks’, stimuli=None, action_options=None,

group_by=None, extra_processing=None, csv_read_options=None)
Import data from a folder full of .csv files, where each file contains the information of one participant

Parameters

e folder (string, optional)- The folder where the data can be found. Default
is the current folder.

e file name_filter (callable, string, list of strings or
None, optional) — A function to process the file names or a list of possible
prefixes as strings or a single string. Default None, no file names removed

e terminal_ID (bool, optional) — Is there an ID number at the end of the
filename? If not then a more general search will be performed. Default True

* split_by (string or list of strings, optional)- If multiple par-
ticipants datasets are in one file sheet, this specifies the column or columns that can
distinguish and identify the rows for each participant. Default None

* participantID (string, optional)-—The dictkey where the participant ID
can be found. Default None, which results in the file name being used.

* choices (string, optional)-The dictkey where the participant choices can
be found. Default 'actions'

» feedbacks (string, optional)— The dict key where the feedbacks the par-
ticipant received can be found. Default ' feedbacks'

e stimuli (string or list of strings, optional) — The dict keys
where the stimulus cues for each trial can be found. Default ' None''

* action_options (string or list of strings or None or one
element list with a list, optional) — If a string or list of strings
these are treated as dict keys where the valid actions for each trial can be found. If
None then all trials will use all available actions. If the list contains one list then it
will be treated as a list of valid actions for each trialstep. Default ' None'

* group_by (1ist of strings, optional)-— A listof parts of filenames that
are repeated across participants, identifying all the files that should be grouped to-
gether to form one participants data. The rest of the filename is assumed to identify
the participant. Default is None

* extra_processing (callable, optional)— A function that modifies the
dictionary of data read for each participant in such that it is appropriate for fitting.
Default is None

* csv_read_options (dict, optional) — The keyword arguments for pan-
das.read_csv. Default {}

Returns Data
Return type Data class instance
See also:

pandas.read_csv ()

20 Chapter 6. Documentation

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict

pyHPDM Documentation, Release 0.9.9

classmethod from mat (folder="./", file_name_filter=None, terminal_ID=True, participan-

tID=None, choices="actions’, feedbacks="feedbacks’, stimuli=None,
action_options=None, group_by=None, extra_processing=None)

Import data from a folder full of .mat files, where each file contains the information of one participant

Parameters

folder (string, optional)-—The folder where the data can be found. Default
is the current folder.

file _name_filter (callable, string, list of strings or
None, optional) — A function to process the file names or a list of possible
prefixes as strings or a single string. Default None, no file names removed

terminal_ 1ID (bool, optional) — Is there an ID number at the end of the
filename? If not then a more general search will be performed. Default True

participantID (string, optional)-The dictkey where the participant ID
can be found. Default None, which results in the file name being used.

choices (string, optional)- The dict key where the participant choices can
be found. Default 'actions'

feedbacks (string, optional) - The dict key where the feedbacks the par-
ticipant received can be found. Default ' feedbacks'

stimuli (string or list of strings, optional) — The dict keys
where the stimulus cues for each trial can be found. Default 'None''

action_options (string or list of strings or None or one
element list with a list, optional) — If a string or list of strings
these are treated as dict keys where the valid actions for each trial can be found. If
None then all trials will use all available actions. If the list contains one list then it
will be treated as a list of valid actions for each trialstep. Default ' None'

group_by (1ist of strings, optional)— A listof parts of filenames that
are repeated across participants, identifying all the files that should be grouped to-
gether to form one participants data. The rest of the filename is assumed to identify
the participant. Default is None

extra_processing (callable, optional)— A function that modifies the
dictionary of data read for each participant in such that it is appropriate for fitting.
Default is None

Returns Data

Return type Data class instance

See also:

scipy.io.loadmat ()

classmethod from pkl (folder="./", file_name_filter=None, terminal_ID=True, participan-

tID=None, choices="actions’, feedbacks="feedbacks’, stimuli=None,
action_options=None, group_by=None, extra_processing=None)

Import data from a folder full of .pkl files, where each file contains the information of one participant.
This will principally be used to import data stored by task simulations

Parameters

folder (string, optional)-The folder where the data can be found. Default
is the current folder.

file name filter (callable, string, 1list of strings or
None, optional) — A function to process the file names or a list of possible
prefixes as strings or a single string. Default None, no file names removed

6.3. data module

21

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

pyHPDM Documentation, Release 0.9.9

e terminal_1ID (bool, optional) — Is there an ID number at the end of the
filename? If not then a more general search will be performed. Default True

* participantID (string, optional)-—The dictkey where the participant ID
can be found. Default None, which results in the file name being used.

* choices (string, optional)- The dictkey where the participant choices can
be found. Default 'actions'

* feedbacks (string, optional)— The dict key where the feedbacks the par-
ticipant received can be found. Default ' feedbacks'

e stimuli (string or list of strings, optional) — The dict keys
where the stimulus cues for each trial can be found. Default 'None''

* action_options (string or list of strings or None or one
element list with a list, optional) — If a string or list of strings
these are treated as dict keys where the valid actions for each trial can be found. If
None then all trials will use all available actions. If the list contains one list then it
will be treated as a list of valid actions for each trialstep. Default ' None''

* group_by (1ist of strings, optional)-— A listof parts of filenames that
are repeated across participants, identifying all the files that should be grouped to-
gether to form one participants data. The rest of the filename is assumed to identify
the participant. Default is None

* extra_processing (callable, optional)— A function that modifies the
dictionary of data read for each participant in such that it is appropriate for fitting.
Default is None

Returns Data

Return type Data class instance

classmethod from xlsx (folder="/’, file_name_filter=None, terminal_ID=True,
split_by=None, participantID=None, choices="actions’,
feedbacks="feedbacks’, stimuli=None, ac-

tion_options=None, group_by=None, extra_processing=None,

xlsx_read_options=None)
Import data from a folder full of .xIsx files, where each file contains the information of one participant

Parameters

e folder (string, optional)- The folder where the data can be found. Default
is the current folder.

e file_name_ filter (callable, string, list of strings or
None, optional) — A function to process the file names or a list of possible
prefixes as strings or a single string. Default None, no file names removed

e terminal_1ID (bool, optional) — Is there an ID number at the end of the
filename? If not then a more general search will be performed. Default True

* split_by (string or list of strings, optional) - If multiple par-
ticipants datasets are in one file sheet, this specifies the column or columns that can
distinguish and identify the rows for each participant. Default None

* participantID (string, optional)- The dictkey where the participant ID
can be found. Default None, which results in the file name being used.

* choices (string, optional)- The dictkey where the participant choices can
be found. Default 'actions’

* feedbacks (string, optional)— The dict key where the feedbacks the par-
ticipant received can be found. Default ' feedbacks"'

* stimuli (string or list of strings, optional) — The dict keys
where the stimulus cues for each trial can be found. Default ' None''

22 Chapter 6. Documentation

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool

pyHPDM Documentation, Release 0.9.9

action_options (string or list of strings or None or one
element list with a list, optional) — If a string or list of strings
these are treated as dict keys where the valid actions for each trial can be found. If
None then all trials will use all available actions. If the list contains one list then it
will be treated as a list of valid actions for each trialstep. Default ' None'

group_by (list of strings, optional)— A listof parts of filenames that
are repeated across participants, identifying all the files that should be grouped to-
gether to form one participants data. The rest of the filename is assumed to identify
the participant. Default is None

extra_processing (callable, optional) — A function that modifies the
dictionary of data read for each participant in such that it is appropriate for fitting.
Default is None

x1lsx read options (dict, optional)— The keyword arguments for pan-
das.read_excel

Returns Data

Return type Data class instance

See also:

pandas.read_excel ()

classmethod load_data (file_type="csv’, folders="./", file_name_filter=None, ter-

minal_ID=True, split_by=None, participantID=None,
choices="actions’, feedbacks="feedbacks’, stimuli=None, ac-
tion_options=None, group_by=None, extra_processing=None,
data_read_options=None)

Import data from a folder. This is a wrapper function for the other import methods

Parameters

file_type (string, optional) - The file type of the data, from mat, csv,
x1sx and pk1l. Defaultis csv

folders (string or list of strings, optional) — The folder or
folders where the data can be found. Default is the current folder.

file name_filter (callable, string, list of strings or
None, optional) — A function to process the file names or a list of possible
prefixes as strings or a single string. Default None, no file names removed

terminal_1ID (bool, optional) — Is there an ID number at the end of the
filename? If not then a more general search will be performed. Default True

split_by (string or list of strings, optional) - If multiple par-
ticipant datasets are in one file sheet, this specifies the column or columns that can
distinguish and identify the rows for each participant. Default None

participantID (string, optional)—The dictkey where the participant ID
can be found. Default None, which results in the file name being used.

choices (string, optional)- The dict key where the participant choices can
be found. Default 'actions'

feedbacks (string, optional) - The dict key where the feedbacks the par-
ticipant received can be found. Default ' feedbacks'

stimuli (string or list of strings, optional) — The dict keys
where the stimulus cues for each trial can be found. Default ' None''

action_options (string or list of strings or None or one
element list with a list, optional) — If a string or list of strings
these are treated as dict keys where the valid actions for each trial can be found. If

6.3. data module

23

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None

pyHPDM Documentation, Release 0.9.9

None then all trials will use all available actions. If the list contains one list then it
will be treated as a list of valid actions for each trialstep. Default ' None'

* group_by (1ist of strings, optional)-— A listof parts of filenames that
are repeated across participants, identifying all the files that should be grouped to-
gether to form one participants data. The rest of the filename is assumed to identify
the participant. Default is None

* extra_processing (callable, optional)— A function that modifies the
dictionary of data read for each participant in such that it is appropriate for fitting.
Default is None

* data_read_options (dict, optional) — The keyword arguments for the
data importing method chosen

Returns Data
Return type Data class instance

exception data.DimentionError
Bases: Exception

exception data.FileError
Bases: Exception

exception data.FileFilterError
Bases: Exception

exception data.FileTypeError
Bases: Exception

exception data.FoldersError
Bases: Exception

exception data.IDError
Bases: Exception

exception data.LengthError
Bases: Exception

exception data.ProcessingError
Bases: Exception

data.sort_by_ last_number (dataFiles)

6.4 taskGenerator module

Author Dominic Hunt

class taskGenerator.TaskGeneration (fask_name, parameters=None, other_options=None)
Bases: object

Generates task class instances based on a task and a set of varying parameters
Parameters

* task_name (string)— The name of the file where a tasks.taskTemplate.Task class
can be found

* parameters (dictionary of floats or lists of floats)-— Parame-
ters are the options that you are or are likely to change across task instances. When a
parameter contains a list, an instance of the task will be created for every combination
of this parameter with all the others. Default None

24 Chapter 6. Documentation

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/functions.html#object

pyHPDM Documentation, Release 0.9.9

* other_options(dictionary of float, string or binary valued
elements)— These contain all the the task options that describe the task being studied
but do not vary across task instances. Default None

iter task_ID ()
Yields the tasks IDs. To be used with self.new_task(expID) to receive the next tasks instance

Returns explID — The ID number that refers to the next tasks parameter combination.
Return type int

new_task (fask_number)
Produces the next tasks instance

Parameters task_number (int)— The number of the tasks instance to be initialised
Returns instance

Return type tasks.taskTemplate.Task instance

6.5 tasks package

6.5.1 Submodules

6.5.1.1 tasks.balltask module

pyhpdm version of the balltask task TODO: describe tasks

class tasks.balltask.Balltask (nbr_of bags=6, bag_colors=[red’, ‘green’, "blue’],
balls_per_bag=3)
Bases: tasks.taskTemplate. Task

feedback ()
Responds to the action from the participant balltask has no rewards so we return None

proceed ()
Updates the task after feedback

receiveAction (action)
Receives the next action from the participant

Parameters action (int or string)-— The action taken by the model

returnTaskState ()
Returns all the relevant data for this task run

Returns history — A dictionary containing the class parameters as well as the other useful
data

Return type dictionary

storeState ()
Stores the state of all the important variables so that they can be output later

class tasks.balltask.RewardBalltaskDirect (**kwargs)
Bases: model.modelTemplate.Rewards

Processes the reward for models expecting just the reward
processFeedback (feedback, lastAction, stimuli)
Returns

Return type modelFeedback

6.5. tasks package 25

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

pyHPDM Documentation, Release 0.9.9

class tasks.balltask.StimulusBalltaskSimple (**kwargs)
Bases: model.modelTemplate.Stimulus

Processes the stimulus cues for models expecting just the event

processStimulus (observation)
Processes the decks stimuli for models expecting just the event

Returns
« stimuliPresent (int or list of int) — The elements present of the stimulus

« stimuliActivity (float or list of float) — The activity of each of the elements

6.5.1.2 tasks.basic module

Author Dominic Hunt
Note A simple example of a task class with all the necessary components

class tasks.basic.Basic (trials=100)
Bases: tasks.taskTemplate. Task

An example of a task with all the necessary components, but nothing changing
Parameters trials (int)— The number of trials in the task

Name
The name of the class used when recording what has been used.

Type string

feedback ()
Responds to the action from the participant

proceed ()
Updates the task after feedback

receiveAction (action)
Receives the next action from the participant

Parameters action (int or string)- The action taken by the model

returnTaskState ()
Returns all the relevant data for this task run

Returns results — A dictionary containing the class parameters as well as the other useful
data

Return type dictionary

storeState ()
Stores the state of all the important variables so that they can be output later

class tasks.basic.RewardBasicDirect (**kwargs)
Bases: model.modelTemplate.Rewards

Processes the reward for models expecting just the reward
processFeedback (feedback, lastAction, stimuli)
Returns
Return type modelFeedback

class tasks.basic.StimulusBasicSimple (**kwargs)
Bases: model.modelTemplate.Stimulus

Processes the stimulus cues for models expecting just the event

26 Chapter 6. Documentation

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

pyHPDM Documentation, Release 0.9.9

processStimulus (observation)
Processes the decks stimuli for models expecting just the event

Returns
o stimuliPresent (int or list of int) — The elements present of the stimulus

* stimuliActivity (float or list of float) — The activity of each of the elements

6.5.1.3 tasks.beads module

Author Dominic Hunt

Reference Jumping to conclusions: a network model predicts schizophrenic patients’ performance
on a probabilistic reasoning task. Moore, S. C., & Sellen, J. L. (2006). Cognitive, Affective &
Behavioral Neuroscience, 6(4), 261-9. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/
17458441

class tasks.beads.Beads (N=None, beadSequence=[1,1,1,0,1,1,1,1,0,1,0,0,0, 1,0, 0, 0, 0,

1,0])
Bases: tasks.taskTemplate. Task

Based on the Moore & Sellen Beads task

Many methods are inherited from the tasks.taskTemplate.Task class. Refer to its documentation for missing
methods.

Name
The name of the class used when recording what has been used.

Type string

Parameters
* N(int, optional)- Number of beads that could potentially be shown

* beadSequence (1ist or array of {0,1}, optional)-The sequence of
beads to be shown. Bead sequences can also be embedded in the code and then referred
to by name. The only current one is MooreSellen, the default sequence.

receiveAction (action)
Receives the next action from the participant
Parameters action (int or string)- The action taken by the model

returnTaskState ()
Returns all the relevant data for this task run

Returns results — A dictionary containing the class parameters as well as the other useful
data

Return type dictionary

storeState ()
Stores the state of all the important variables so that they can be output later

class tasks.beads.RewardBeadDirect (**kwargs)
Bases: model.modelTemplate.Rewards

Processes the beads reward for models expecting just the reward
processFeedback (feedback, lastAction, stimuli)
Returns

Return type modelFeedback

6.5. tasks package 27

http://www.ncbi.nlm.nih.gov/pubmed/17458441
http://www.ncbi.nlm.nih.gov/pubmed/17458441
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int

pyHPDM Documentation, Release 0.9.9

class tasks.beads.StimulusBeadDirect (**kwargs)
Bases: model.modelTemplate.Stimulus

Processes the beads stimuli for models expecting just the event

processStimulus (observation)
Processes the decks stimuli for models expecting just the event

Returns
« stimuliPresent (int or list of int)
 stimuliActivity (float or list of float)

class tasks.beads.StimulusBeadDualDirect (**kwargs)
Bases: model.modelTemplate.Stimulus

Processes the beads stimuli for models expecting a tuple of [event, 1-event]

processStimulus (observation)
Processes the decks stimuli for models expecting just the event

Returns
« stimuliPresent (int or list of int) — The elements present of the stimulus
« stimuliActivity (float or list of float) — The activity of each of the elements

class tasks.beads.StimulusBeadDualInfo (**kwargs)
Bases: model.modelTemplate.Stimulus

Processes the beads stimuli for models expecting the reward information from two possible actions

Parameters oneProb (floatin [0, 1]) — The probability of a 1 from the first jar. This is also
the probability of a O from the second jar. event_info is calculated as oneProbxevent
+ (l-oneProb) x (l-event)

oneProb = [0, 1]

processStimulus (observation)
Processes the decks stimuli for models expecting just the event

Returns
« stimuliPresent (int or list of int) — The elements present of the stimulus
« stimuliActivity (float or list of float) — The activity of each of the elements

tasks.beads.generateSequence (numBeads, oneProb, switchProb)
Designed to generate a sequence of beads with a probability of switching jar at any time.

Parameters
* numBeads (int)— The number of beads in the sequence

* oneProb (floatin [0, 1]) — The probability of a 1 from the first jar. This is also the
probability of a 0 from the second jar.

* switchProb (floatin [0, 1]) — The probability that the drawn beads change the jar
they are being drawn from

Returns sequence — The generated sequence of beads
Return type listof {0, 1}

6.5.1.4 tasks.decks module

Author Dominic Hunt

28 Chapter 6. Documentation

https://docs.python.org/3/library/functions.html#int

pyHPDM Documentation, Release 0.9.9

Reference Regulatory fit effects in a choice task Worthy, D. a, Maddox, W. T., & Markman, A. B.
(2007). Psychonomic Bulletin & Review, 14(6), 1125-32. Retrieved from http://www.ncbi.nlm.
nih.gov/pubmed/18229485

class tasks.decks.Decks (draws=None, decks=array([[2, 2,1, 1,2, 1,1, 3,2,6,2,8, 1,6, 2, 1,
1,58 5,10, 10,8, 3,10,7,10,8,3,4,9, 10,

10,7, 7,1,

1,3 1,411,
Bases: tasks.taskTemplate. Task

Based on the Worthy&Maddox 2007 paper “Regulatory fit effects in a choice task.

Many methods are inherited from the tasks.taskTemplate.Task class. Refer to its documentation for missing
methods.

Name
The name of the class used when recording what has been used.

Type string

Parameters
* draws (int, optional)- Number of cards drawn by the participant
* decks (array of floats, optional)- The decks of cards
* discard (bool)— Defines if you discard the card not chosen or if you keep it.
feedback ()
Responds to the action from the participant

proceed ()
Updates the task after feedback

receiveAction (action)
Receives the next action from the participant

Parameters action (int or string)- The action taken by the model

returnTaskState ()
Returns all the relevant data for this task run

Returns results — A dictionary containing the class parameters as well as the other useful
data

Return type dictionary

storeState ()
Stores the state of all the important variables so that they can be output later

class tasks.decks.RewardDecksAllInfo (**kwargs)
Bases: model.modelTemplate.Rewards

Processes the decks reward for models expecting the reward information from all possible actions
Parameters
* maxRewardVal (int)— The highest value a reward can have
* minRewardVal (int)— The lowest value a reward can have

* number_actions (int)— The number of actions the participant can perform. As-
sumes the lowest valued action is 0

6.5. tasks package 29

http://www.ncbi.nlm.nih.gov/pubmed/18229485
http://www.ncbi.nlm.nih.gov/pubmed/18229485
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

pyHPDM Documentation, Release 0.9.9

Returns deckRew — The function expects to be passed a tuple containing the reward and the
last action. The reward that is a float and action is {0,1}. The function returns a array of
length (maxRewardVal-minRewardVal)*number_actions.

Return type function

Name
The identifier of the function

Type string

Examples

>>> rew = RewardDecksAllInfo (maxRewardVal=10, minRewardVal=1l, number_actions=2)
>>> rew.processFeedback (6, 0, 1)

array([(1., 1., 1., 1., 1., 2., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
—1., 1.])

>>> rew.processFeedback (6, 1, 1)

array((1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 2., 1., 1.,

—~1., 1.1)
maxRewardval = 10
minRewardvVal = 1

number_actions = 2
processFeedback (reward, action, stimuli)
Returns
Return type modelFeedback

class tasks.decks.RewardDecksDualInfo (**kwargs)
Bases: model.modelTemplate.Rewards

Processes the decks reward for models expecting the reward information from two possible actions.
epsilon =1
maxRewardval = 10
processFeedback (reward, action, stimuli)
Returns
Return type modelFeedback

class tasks.decks.RewardDecksDualInfolLogistic (**kwargs)
Bases: model.modelTemplate.Rewards

Processes the decks rewards for models expecting the reward information from two possible actions.
epsilon = 0.3
maxRewardval = 10
minRewardval = 1
processFeedback (reward, action, stimuli)
Returns
Return type modelFeedback

class tasks.decks.RewardDecksLinear (**kwargs)
Bases: model.modelTemplate.Rewards

Processes the decks reward for models expecting just the reward

processFeedback (feedback, lastAction, stimuli)

30 Chapter 6. Documentation

pyHPDM Documentation, Release 0.9.9

Returns
Return type modelFeedback

class tasks.decks.RewardDecksNormalised (**kwargs)
Bases: model.modelTemplate.Rewards

Processes the decks reward for models expecting just the reward, but in range [0,1]

Parameters maxReward (int, optional)-—The highest value a reward can have. Default
10

See also:

model.OpAL

maxReward = 10

processFeedback (feedback, lastAction, stimuli)
Returns
Return type modelFeedback

class tasks.decks.RewardDecksPhi (**kwargs)
Bases: model.modelTemplate.Rewards

Processes the decks reward for models expecting just the reward, but in range [0, 1]
Parameters phi (f1oat)— The scaling value of the reward
phi = 1
processFeedback (feedback, lastAction, stimuli)
Returns
Return type modelFeedback

class tasks.decks.StimulusDecksLinear (**kwargs)
Bases: model.modelTemplate.Stimulus

processStimulus (observation)
Processes the decks stimuli for models expecting just the event

Returns
« stimuliPresent (inf or list of int) — The elements present of the stimulus

* stimuliActivity (float or list of float) — The activity of each of the elements

6.5.1.5 tasks.taskTemplate module

Author Dominic

class tasks.taskTemplate.Task
Bases: object

The abstract tasks class from which all others inherit
Many general methods for tasks are found only here

Name
The name of the class used when recording what has been used.

Type string

feedback ()
Responds to the action from the participant

Returns feedback

6.5. tasks package 31

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#object

pyHPDM Documentation, Release 0.9.9

Return type None, int or float

classmethod get_name ()
Returns the name of the class

params ()
Returns the parameters of the task as a dictionary

Returns parameters — The parameters of the task
Return type dict

proceed ()
Updates the task before the next trialstep

receiveAction (action)
Receives the next action from the participant

Parameters action (int or string)- The action taken by the model

returnTaskState ()
Returns all the relevant data for this task run

Returns results — A dictionary containing the class parameters as well as the other useful
data

Return type dictionary
standardResultOutput ()

storeState ()
Stores the state of all the important variables so that they can be output later

6.5.1.6 tasks.paviov module

Author Dominic Hunt

Reference Value and prediction error in medial frontal cortex: integrating the single-unit and sys-
tems levels of analysis. Silvetti, M., Seurinck, R., & Verguts, T. (2011). Frontiers in Human
Neuroscience, 5(August), 75. doi:10.3389/fnhum.2011.00075

class tasks.pavlov.Pavlov (rewMag=4, rewProb=array([0.87, 0.33]), stimMag=1, stim-
Dur=20, rewDur=4, simDur=30, stimRepeats=7)
Bases: tasks.taskTemplate. Task

Based on the Silvetti et al 2011 paper “Value and prediction error in medial frontal cortex: integrating the
single-unit and systems levels of analysis.”

Many methods are inherited from the tasks.taskTemplate.Task class. Refer to its documentation for missing
methods.

Name
The name of the class used when recording what has been used.

Type string

Parameters
* rewMag (float, optional)— The size of the stimulus. Default 4

* rewProb (array of floats, optional)-— The probabilities of each stimulus
producing a reward. Default [0.85,0.33]

* stimMag (float, optional)- The size of the stimulus. Default 1

e stimDur (int, optional) - The duration, in tens of ms, that the stimulus is pro-
duced for. This should be longer than rewDur since rewDur is set to end when stimDur
ends. Default 200

32 Chapter 6. Documentation

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

pyHPDM Documentation, Release 0.9.9

* rewDur (int, optional)-The duration,in tens of ms, that the reward is produced
for. Default 40

e simDur (int, optional)— The duration, in tens of ms, that each stimulus event
is run for. Default 300

* stimRepeats (int, optional) - The number of times a stimulus is introduced.
Default 72

feedback ()
Responds to the action from the participant

proceed ()
Updates the task after feedback

receiveAction (action)
Receives the next action from the participant

Parameters action (int or string)- The action taken by the model

returnTaskState ()
Returns all the relevant data for this task run

Returns results — A dictionary containing the class parameters as well as the other useful
data

Return type dictionary

storeState ()
Stores the state of all the important variables so that they can be output later

tasks.pavlov.pavlovStimTemporal ()
Passes the pavlov stimuli to models that cope with stimuli and rewards that have a duration.

Returns pavlovStim — The function expects to be passed an event with three com-
ponents: (stim,rew,stimDur) ~and an action (unused) and yield a
series of events " 't,c,r’. stim is the value of the stimulus. It is expected
to be a list-like object. rew is a list containing the reward for each trialstep. The reward is
expected to be a float. stimDur is the duration of the stimulus, an int. This should be
less than the length of rew. c the stimulus. r the reward. t is the time

Return type function

tasks.pavlov.Name
The identifier of the function

Type string

6.5.1.7 tasks.probSelect module

Author Dominic Hunt

Reference Genetic triple dissociation reveals multiple roles for dopamine in reinforcement learn-
ing. Frank, M. J., Moustafa, A. a, Haughey, H. M., Curran, T., & Hutchison, K. E. (2007).
Proceedings of the National Academy of Sciences of the United States of America, 104(41),
16311-16316. doi:10.1073/pnas.0706111104

class tasks.probSelect.ProbSelect (reward_probability=0.7, learning_action_pairs=None,
action_reward_probabilities=None, learn-
ing_length=240, test_length=60, num-

ber_actions=None, reward_size=1)
Bases: tasks.taskTemplate.Task

Probabilistic selection task based on Genetic triple dissociation reveals multiple roles for dopamine in reinforcement I
Frank, M. J., Moustafa, A. a, Haughey, H. M., Curran, T., & Hutchison, K. E. (2007). Proceedings

6.5. tasks package 33

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

pyHPDM Documentation, Release 0.9.9

of the National Academy of Sciences of the United States of America, 104(41), 16311-16316.
doi:10.1073/pnas.0706111104

Many methods are inherited from the tasks.taskTemplate.Task class. Refer to its documentation for missing
methods.

Name
The name of the class used when recording what has been used.

Type string

Parameters

* reward_probability (float in range [0,1], optional)— The prob-
ability that a reward is given for choosing action A. Default is 0.7

* action_reward probabilities (dictionary, optional) — A dictio-
nary of the potential actions that can be taken and the probability of a reward. Default
{O:rewardProb, 1:1-rewardProb, 2:0.5, 3:0.5}

* learning_action_pairs (list of tuples, optional) — The pairs of
actions shown together in the learning phase.

* learning_length (int, optional) — The number of trials in the learning
phase. Default is 240

* test_length (int, optional) - The number of trials in the test phase. Default
is 60

* reward_size (float, optional)- The size of reward given if successful. De-
fault 1

* number_actions (int, optional)- The number of actions that can be chosen
at any given time, chosen at random from actRewardProb. Default 4

Notes

The task is broken up into two sections: a learning phase and a transfer phase. Participants choose between
pairs of four actions: A, B, M1 and M2. Each provides a reward with a different probability: A:P>0.5,
B:1-P<0.5, M1=M2=0.5. The transfer phase has all the action pairs but no feedback. This class only covers
the learning phase, but models are expected to be implemented as if there is a transfer phase.

feedback ()
Responds to the action from the participant

proceed ()
Updates the task after feedback

receiveAction (action)
Receives the next action from the participant

Parameters action (int or string)- The action taken by the model

returnTaskState ()
Returns all the relevant data for this task run

Returns results — A dictionary containing the class parameters as well as the other useful
data

Return type dictionary

storeState ()
Stores the state of all the important variables so that they can be output later

class tasks.probSelect.RewardProbSelectDirect (**kwargs)
Bases: model.modelTemplate.Rewards

34 Chapter 6. Documentation

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

pyHPDM Documentation, Release 0.9.9

Processes the probabilistic selection reward for models expecting just the reward
processFeedback (reward, action, stimuli)

Returns

Return type modelFeedback

class tasks.probSelect.StimulusProbSelectDirect (**kwargs)
Bases: model.modelTemplate.Stimulus

Processes the selection stimuli for models expecting just the event

Examples

>>> stim = StimulusProbSelectDirect ()
>>> stim.processStimulus (1)

(1, 1)

>>> stim.processStimulus (0)

(1, 1)

processStimulus (observation)
Processes the decks stimuli for models expecting just the event

Returns
* stimuliPresent (int or list of int)

o stimuliActivity (float or list of float)

6.5.1.8 tasks.probStim module

Author Dominic Hunt

class tasks.probStim.Probstim (cues=None, actualities=None, trialsteps=100, numStim-
uli=4, correctProb=0.8, correctProbabilities=None, reward-

lessT=None)
Bases: tasks.taskTemplate.Task

Basic probabilistic

Many methods are inherited from the tasks.taskTemplate.Task class. Refer to its documentation for missing
methods.

Name
The name of the class used when recording what has been used.

Type string

Parameters

* actualities (int, optional) — The actual reality the cues pointed to. The
correct response the participant is trying to get correct

* cues (array of floats, optional)-—The cues used to guess the actualities

* trialsteps (int, optional)-Ifno provided cues, itis the number of trialsteps
for the generated set of cues. Default 100

* numStimuli (int, optional) - If no provided cues, it is the number of distinct
stimuli for the generated set of cues. Default 4

* correctProb (float in [0,1], optional)-Ifno actualities provided, it is
the probability of the correct answer being answer 1 rather than answer 0. The default
is0.8

6.5. tasks package 35

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

pyHPDM Documentation, Release 0.9.9

* correctProbs (list or array of floats in [0,1], optional) —
If no actualities provided, it is the probability of the correct answer being answer 1 rather
than answer O for each of the different stimuli. Default [corrProb, l-corrProb]
* (numStimuli//2) + [corrProb] * (numStimuli%2)

* rewardlessT (int, optional) — If no actualities provided, it is the num-
ber of actualities at the end of the tasks that will have a None reward. Default
2+xnumStimuli

feedback ()
Feedback to the action from the participant

proceed ()
Updates the task after feedback

receiveAction (action)
Receives the next action from the participant

Parameters action (int or string)-— The action taken by the model

returnTaskState ()
Returns all the relevant data for this task run

Returns results — A dictionary containing the class parameters as well as the other useful
data

Return type dictionary

storeState ()
Stores the state of all the important variables so that they can be output later

class tasks.probStim.RewardProbStimDiff (**kwargs)
Bases: model.modelTemplate.Rewards

Processes the reward for models expecting reward corrections
processFeedback (feedback, lastAction, stimuli)
Returns
Return type modelFeedback

class tasks.probStim.RewardProbStimDualCorrection (**kwargs)
Bases: model.modelTemplate.Rewards

Processes the reward for models expecting the reward correction from two possible actions.
epsilon =1
processFeedback (feedback, lastAction, stimuli)

Returns

Return type modelFeedback

class tasks.probStim.StimulusProbStimDirect (**kwargs)
Bases: model.modelTemplate.Stimulus

Processes the stimuli for models expecting just the event

processStimulus (observation)
Processes the decks stimuli for models expecting just the event

Returns
« stimuliPresent (int or list of int) — The elements present of the stimulus

* stimuliActivity (float or list of float) — The activity of each of the elements

36 Chapter 6. Documentation

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

pyHPDM Documentation, Release 0.9.9

6.5.1.9 tasks.weather module

Author Dominic Hunt

Reference Probabilistic classification learning in amnesia. Knowlton, B. J., Squire, L. R., & Gluck,
M. a. (1994). Learning & Memory(Cold Spring Harbor, N.Y.), 1(2), 106-120. http://doi.org/
10.1101/lm.1.2.106

class tasks.weather.RewardWeatherDiff (**kwargs)
Bases: model.modelTemplate.Rewards

Processes the weather reward for models expecting reward corrections
processFeedback (feedback, lastAction, stimuli)

Returns

Return type modelFeedback

class tasks.weather.RewardWeatherDualCorrection (**kwargs)
Bases: model.modelTemplate.Rewards

Processes the decks reward for models expecting the reward correction from two possible actions.
epsilon =1
processFeedback (feedback, lastAction, stimuli)

Returns

Return type modelFeedback

class tasks.weather.RewardsWeatherDirect (**kwargs)
Bases: model.modelTemplate.Rewards

Processes the weather reward for models expecting the reward feedback
processFeedback (feedback, lastAction, stimuli)

Returns

Return type modelFeedback

class tasks.weather.StimulusWeatherDirect (**kwargs)
Bases: model.modelTemplate.Stimulus

Processes the weather stimuli for models expecting just the event

processStimulus (observation)
Processes the decks stimuli for models expecting just the event

Returns
« stimuliPresent (int or list of int) — The elements present of the stimulus
* stimuliActivity (float or list of float) — The activity of each of the elements

class tasks.weather.Weather (cueProbs=[[0.2, 0.8, 0.2, 0.8], [0.8, 0.2, 0.8, 0.2]], learn-
ingLen=200, testLen=100, number_cues=None, cues=None, ac-

tualities=None)
Bases: tasks.taskTemplate. Task

Based on the 1994 paper “Probabilistic classification learning in amnesia.”

Many methods are inherited from the tasks.taskTemplate.Task class. Refer to its documentation for missing
methods.

Name
The name of the class used when recording what has been used.

Type string

6.5. tasks package 37

http://doi.org/10.1101/lm.1.2.106
http://doi.org/10.1101/lm.1.2.106

pyHPDM Documentation, Release 0.9.9

Parameters

* cueProbs (array of int, optional) — If generating data, the likelihood of
each cue being associated with each actuality. Each row of the array describes one
actuality, with each column representing one cue. Each column is assumed sum to 1

e number_ cues (int, optional)- The number of cues

* learninglen (int, optional)-—The number of trials in the learning phase. De-
fault is 200

* testLen (int, optional)- The number of trials in the test phase. Default is 100

* actualities (array of int, optional) — The actual reality the cues
pointed to; the correct response the participant is trying to get correct

* cues (array of floats, optional) — The stimulus cues used to guess the
actualities
defaultCueProbs = [[0.2, 0.8, 0.2, 0.8], [0.8, 0.2, 0.8, 0.2]]

feedback ()
Feedback to the action from the participant

proceed ()
Updates the task after feedback

receiveAction (action)
Receives the next action from the participant

Parameters action (int or string)- The action taken by the model

returnTaskState ()
Returns all the relevant data for this task run

Returns results — A dictionary containing the class parameters as well as the other useful
data

Return type dictionary

storeState ()
Stores the state of all the important variables so that they can be output later

tasks.weather.genActualities (cueProbs, cues, learninglLen, testLen)

Parameters
* cueProbs —
* cues —
* learninglen —
* testLen -
Returns

Return type actions

tasks.weather.genCues (number_cues, taskLen)

Parameters
* cueProbs —
* taskLen —
Returns

Return type cues

Chapter 6. Documentation

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

pyHPDM Documentation, Release 0.9.9

6.6 modelGenerator module

Author Dominic Hunt

class modelGenerator .ModelGen (model_name, parameters=None, other_options=None)
Bases: object

Generates model class instances based on a model and a set of varying parameters
Parameters

* model_name (string)— The name of the file where a model.modelTemplate.Model
class can be found

* parameters (dictionary containing floats or 1lists of
floats, optional) — Parameters are the options that you are or are likely
to change across model instances. When a parameter contains a list, an instance of
the model will be created for every combination of this parameter with all the others.
Default None

* other_options(dictionary of float, string or binary valued
elements, optional)— These contain all the the model options that define the
version of the model being studied. Default None

iter_details(()
Yields a list containing a model object and parameters to initialise them

Returns
* model (model.modelTemplate.Model) — The model to be initialised
» parameters (ordered dictionary of floats or bools) — The model instance parameters

 other_options (dictionary of floats, strings and binary values)

6.7 model package

6.7.1 Subpackages

6.7.1.1 model.decision package

Submodules
model.decision.binary module

Author Dominic Hunt
A collection of decision making functions where there are only two possible actions

model .decision.binary.single (task_responses=(0, 1))
Decisions using a switching probability

Parameters task_responses (tuple of length two, optional) - Provides the
two action responses expected by the task

Returns

* decision_function (function) — Calculates the decisions based on the probabilities and
returns the decision and the probability of that decision

* decision (int or None) — The action to be taken by the model

* probabilities (OrderedDict of valid responses) — A dictionary of considered actions as
keys and their associated probabilities as values

6.6. modelGenerator module 39

https://docs.python.org/3/library/functions.html#object

pyHPDM Documentation, Release 0.9.9

Examples

>>> np.random.seed (100)

>>> dec = single()

>>> dec (0.23)

(0, OrderedDict([(0, 0.77), (1, 0.23)1))
>>> dec(0.23, 0)

(0, OrderedDict ([(0, 0.77), (1, 0.23)]))

model.decision.discrete module

Author Dominic Hunt

A collection of decision making functions where there are no limits on the number of actions, but they are count-
able.

model.decision.discrete.maxProb (task_responses=(0, 1))
Decisions for an arbitrary number of choices

Choice made by choosing the most likely

Parameters task_responses (tuple) — Provides the action responses expected by the
tasks for each probability estimate.

Returns

* decision_function (function) — Calculates the decisions based on the probabilities and
returns the decision and the probability of that decision

* decision (int or None) — The action to be taken by the model

* probDict (OrderedDict of valid responses) — A dictionary of considered actions as keys
and their associated probabilities as values

See also:

models.QLearn (), models.QLearn2 (), models.OpAL ()

Examples

>>> np.random.seed (100)

>>> d = maxProb ([1,2,3])

>>> d([0.6, 0.3, 0.5])

(1, OrderedDict ([(1, 0.6), (2, 0.3), (3, 0.5)1))
>>> d([0.2, 0.3, 0.5], trial_responses=[1, 2])

(2, OrderedDict ([(1, 0.2), (2, 0.3), (3, 0.51))
>>> d([0.2, 0.3, 0.5], trial_responses=[])

(None, OrderedDict([(1, 0.2), (2, 0.3), (3, 0.5)1))

>>> d = maXPrOb(["A", "B", "Cll})
>>> d([0.6, 0.3, 0.5], trial_ responses=["A", "B"])
('"A', OrderedDict([('A', 0.6), ('B', 0.3), ('C', 0.5)1))

model.decision.discrete.probThresh (task_responses=(0, 1), eta=0.8)
Decisions for an arbitrary number of choices

Choice made by choosing when certain (when probability above a certain value), otherwise randomly

Parameters

* task_responses (tuple) — Provides the action responses expected by the tasks
for each probability estimate.

* eta(float, optional)- The value above which a non-random decision is made.
Default value is 0.8

40 Chapter 6. Documentation

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float

pyHPDM Documentation, Release 0.9.9

Returns

* decision_function (function) — Calculates the decisions based on the probabilities and
returns the decision and the probability of that decision

* decision (int or None) — The action to be taken by the model

* probDict (OrderedDict of valid responses) — A dictionary of considered actions as keys
and their associated probabilities as values

Examples

>>> np.random.seed (100)

>>> d = probThresh (task_responses=[0, 1, 2, 3], eta=0.8)

>>> d([0.2, 0.8, 0.3, 0.5])

(1, OrderedDict ([(0, 0.2), (1, 0.8), (2, 0.3), (3, 0.51))
>>> d([0.2, 0.8, 0.3, 0.5], trial_responses=[0, 2])

(0, OrderedDict([(0, 0.2), (1, 0.8), (2, 0.3), (3, 0.5)1))
>>> d([0.2, 0.8, 0.3, 0.5], trial_responses=[])

(None, OrderedDict ([(0, 0.2), (1, 0.8), (2, 0.3), (3, 0.5)1))

>>> d = probThresh (["A","B","C"])
>>> d([0.2, 0.3, 0.8], trial_ responses=["A", "B"])
('A', OrderedDict ([('A', 0.2), ('B', 0.3), ('C', 0.8)1))

model.decision.discrete.weightProb (fask_responses=(0, 1))

Decisions for an arbitrary number of choices
Choice made by choosing randomly based on which are valid and what their associated probabilities are

Parameters task_responses (tuple)—Provides the action responses expected by the task
for each probability estimate.

Returns

* decision_function (function) — Calculates the decisions based on the probabilities and
returns the decision and the probability of that decision

* decision (int or None) — The action to be taken by the model

* probDict (OrderedDict of valid responses) — A dictionary of considered actions as keys
and their associated probabilities as values

See also:

models.QLearn (), models.QLearn? (), models.OpAL ()

Examples

>>> np.random.seed (100)

>>> d = weightProb ([0, 1, 2, 3])

>>> d([0.4, 0.8, 0.3, 0.5])

(1, OrderedDict ([(0, 0.2), (1, 0.4), (2, 0.15), (3, 0.25)1))
>>> d([0.1, 0.3, 0.4, 0.2])

(1, OrderedDict ([(0, 0.1), (1, 0.3), (2, 0.4), (3, 0.2)1))
>>> d([0.2, 0.5, .3, 0.5], trial_responses=[0, 2])

(2, OrderedDict ([(0, 0.4), (1, 0), (2, 0.6), (3, 0)1))

(
0
(0,
>>> d = weightProb(["A", "B", "C"])
>>> d([0.2, 0.3, 0.5], trial_responses=["A", "B"])
('"B', OrderedDict ([('A', 0.4), ('B', 0.6), ('C', 0)1))
>>> d([0.2, 0.3, 0.5], trial_responses=[])
(None, OrderedDict([('A', 0.2), ('B', 0.3), ('C', 0.5)1))

6.7. model package a1

https://docs.python.org/3/library/stdtypes.html#tuple

pyHPDM Documentation, Release 0.9.9

6.7.2 Submodules

6.7.2.1 model.ACBasic module

Author Dominic Hunt
Reference Based on ideas we had.

class model.ACBasic.ACBasic (alpha=0.3, beta=4, invBeta=None, alphaE=None, al-

phaA=None, expect=None, actorExpect=None, **kwargs)
Bases: model.modelTemplate.Model

A basic, complete actor-critic model

Name
The name of the class used when recording what has been used.

Type string

Parameters
* alpha (float, optional)— Learning rate parameter

* alphaE (float, optional) - Learning rate parameter for the update of the ex-
pectations. Default 1pha

* alphaA (float, optional)-Learning rate parameter for the update of the actor.
Default 1pha

* beta (float, optional)- Sensitivity parameter for probabilities

* invBeta (float, optional)- Inverse of sensitivity parameter. Defined as -1~

EENE
Default 0.2

e number_actions (integer, optional)- The maximum number of valid ac-
tions the model can expect to receive. Default 2.

* number_cues (integer, optional)-

The initial maximum number of stimuli the model can expect to receive. Default
1.

* number_critics (integer, optional) — The number of different reaction
learning sets. Default number_actions*number_cues

* action_codes (dict with string or int as keys and int
values, optional) — A dictionary used to convert between the action refer-
ences used by the task or dataset and references used in the models to describe the
order in which the action information is stored.

* prior (array of floats in [0, 1], optional) — The prior probability of of the states
being the correct one. Default ones ((number_actions, number_cues)) /
number_critics)

* expect (array of floats, optional) — The initialisation of the ex-
pected reward. Default ones ((number_actions, number_cues)) % 5 /
number_cues

e stimFunc (function, optional)— The function that transforms the stimulus
into a form the model can understand and a string to identify it later. Default is
blankStim

* rewFunc (function, optional)— The function that transforms the reward into
a form the model can understand. Default is blankRew

e decFunc (function, optional) - The function that takes the inter-
nal values of the model and turns them in to a decision. Default is
model.decision.discrete.weightProb

42 Chapter 6. Documentation

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

pyHPDM Documentation, Release 0.9.9

actorStimulusProbs ()
Calculates in the model-appropriate way the probability of each action.

Returns probabilities — The probabilities associated with the action choices
Return type 1D ndArray of floats

calcProbabilities (actionValues)
Calculate the probabilities associated with the actions

Parameters actionvValues (1D ndArray of floats)-
Returns probArray — The probabilities associated with the actionValues
Return type 1D ndArray of floats

delta (reward, expectation, action, stimuli)
Calculates the comparison between the reward and the expectation

Parameters

e reward (f1oat)— The reward value

* expectation (float)— The expected reward value

* action (int)— The chosen action

e stimuli ({int | float | tuple | None}) - The stimuli received
Returns
Return type delta

returnTaskState ()
Returns all the relevant data for this model

Returns results — The dictionary contains a series of keys including Name, Probabilities,
Actions and Events.

Return type dict

rewardExpectation (observation)
Calculate the estimated reward based on the action and stimuli

This contains parts that are task dependent
Parameters observation ({int | float | tuple})- The setof stimuli
Returns
 actionExpectations (array of floats) — The expected rewards for each action
« stimuli (/ist of floats) — The processed observations

* activeStimuli (list of [0, 1] mapping to [False, True]) — A list of the stimuli that were
or were not present

storeState ()
Stores the state of all the important variables so that they can be accessed later

updateModel (delta, action, stimuli, stimuliFilter)
Parameters
* delta (float) - The difference between the reward and the expected reward
* action (int) - The action chosen by the model in this trialstep
e stimuli (1ist of float)-The weights of the different stimuli in this trialstep

* stimuliFilter (list of bool)— A listdescribing if a stimulus cue is present
in this trialstep

. model package 43

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

pyHPDM Documentation, Release 0.9.9

6.7.2.2 model. ACE module

Author Dominic Hunt
Reference Based on ideas we had.

class model.ACE.ACE (alpha=0.3, epsilon=0.1, alphaE=None, alphaA=None, expect=None, actor-

Expect=None, **kwargs)
Bases: model.modelTemplate.Model

A basic, complete actor-critic model with decision making based on QLearnE

Name
The name of the class used when recording what has been used.

Type string

Parameters
* alpha (float, optional)-— Learning rate parameter

* alphakE (float, optional)— Learning rate parameter for the update of the ex-
pectations. Default 1pha

* alphaA (float, optional)-Learning rate parameter for the update of the actor.
Default 1pha

* epsilon (float, optional)— Noise parameter. The larger it is the less likely
the model is to choose the highest expected reward

e number_actions (integer, optional)- The maximum number of valid ac-
tions the model can expect to receive. Default 2.

* number_cues (integer, optional)-

The initial maximum number of stimuli the model can expect to receive. Default
1.

* number_critics (integer, optional) — The number of different reaction
learning sets. Default number_actions*number_cues

* action_codes (dict with string or int as keys and int
values, optional) — A dictionary used to convert between the action refer-
ences used by the task or dataset and references used in the models to describe the
order in which the action information is stored.

* prior (array of floats in [0, 1], optional) — The prior probability of of the states
being the correct one. Default ones ((number_actions, number_cues)) /
number_critics)

* expect (array of floats, optional) — The initialisation of the ex-
pected reward. Default ones ((number_actions, number_cues)) % 5 /
number_cues

e stimFunc (function, optional)— The function that transforms the stimulus
into a form the model can understand and a string to identify it later. Default is
blankStim

e rewFunc (function, optional)— The function that transforms the reward into
a form the model can understand. Default is blankRew

e decFunc (function, optional) - The function that takes the inter-
nal values of the model and turns them in to a decision. Default is
model.decision.discrete.weightProb

actorStimulusProbs ()
Calculates in the model-appropriate way the probability of each action.

44 Chapter 6. Documentation

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

pyHPDM Documentation, Release 0.9.9

Returns probabilities — The probabilities associated with the action choices
Return type 1D ndArray of floats

calcProbabilities (actionValues)
Calculate the probabilities associated with the actions

Parameters actionValues (1D ndArray of floats)-—
Returns probArray — The probabilities associated with the actionValues
Return type 1D ndArray of floats

delta (reward, expectation, action, stimuli)
Calculates the comparison between the reward and the expectation

Parameters

* reward (float)— The reward value

* expectation (float)— The expected reward value

e action (int) - The chosen action

e stimuli ({int | float | tuple | None})— The stimuli received
Returns
Return type delta

returnTaskState ()
Returns all the relevant data for this model

Returns results — The dictionary contains a series of keys including Name, Probabilities,
Actions and Events.

Return type dict

rewardExpectation (observation)
Calculate the estimated reward based on the action and stimuli

This contains parts that are task dependent
Parameters observation ({int | float | tuple})— The setof stimuli
Returns
« actionExpectations (array of floats) — The expected rewards for each action
* stimuli (/ist of floats) — The processed observations

« activeStimuli (/ist of [0, 1] mapping to [False, True]) — A list of the stimuli that were
or were not present

storeState ()
Stores the state of all the important variables so that they can be accessed later

updateModel (delta, action, stimuli, stimuliFilter)
Parameters
* delta (f1loat)— The difference between the reward and the expected reward
* action (int)— The action chosen by the model in this trialstep
* stimuli (1ist of float)-The weights of the different stimuli in this trialstep

* stimuliFilter (1ist of bool)- A listdescribing if a stimulus cue is present
in this trialstep

6.7. model package 45

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

pyHPDM Documentation, Release 0.9.9

6.7.2.3 model.ACES module

Author Dominic Hunt
Reference Based on ideas we had.

class model.ACES.ACES (alpha=0.3, epsilon=0.1, expect=None, actorExpect=None, **kwargs)
Bases: model.modelTemplate.Model

A basic, complete actor-critic model with decision making based on QLearnE

Name
The name of the class used when recording what has been used.

Type string

Parameters
* alpha (float, optional)- Learning rate parameter

* epsilon (float, optional)— Noise parameter. The larger it is the less likely
the model is to choose the highest expected reward

* number_actions (integer, optional)- The maximum number of valid ac-
tions the model can expect to receive. Default 2.

* number_cues (integer, optional)-

The initial maximum number of stimuli the model can expect to receive. Default
1.

e number_ critics (integer, optional) — The number of different reaction
learning sets. Default number_actions*number_cues

* action_codes (dict with string or int as keys and int
values, optional) — A dictionary used to convert between the action refer-
ences used by the task or dataset and references used in the models to describe the
order in which the action information is stored.

* prior (array of floats in [0, 1], optional) — The prior probability of of the states
being the correct one. Default ones ((number_actions, number_cues)) /
number_critics)

* expect (array of floats, optional) — The initialisation of the ex-
pected reward. Default ones ((number_actions, number_cues)) * 5 /
number_cues

e stimFunc (function, optional) — The function that transforms the stimulus
into a form the model can understand and a string to identify it later. Default is
blankStim

e rewFunc (function, optional)— The function that transforms the reward into
a form the model can understand. Default is blankRew

* decFunc (function, optional) - The function that takes the inter-
nal values of the model and turns them in to a decision. Default is
model.decision.discrete.weightProb

actorStimulusProbs ()
Calculates in the model-appropriate way the probability of each action.
Returns probabilities — The probabilities associated with the action choices
Return type 1D ndArray of floats

calcProbabilities (actionValues)
Calculate the probabilities associated with the actions

Parameters actionValues (1D ndArray of floats)-—

46 Chapter 6. Documentation

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

pyHPDM Documentation, Release 0.9.9

Returns probArray — The probabilities associated with the actionValues
Return type 1D ndArray of floats

delta (reward, expectation, action, stimuli)
Calculates the comparison between the reward and the expectation

Parameters

e reward (float)— The reward value

* expectation (float) - The expected reward value

e action (int)— The chosen action

e stimuli ({int | float | tuple | None})- The stimuli received
Returns
Return type delta

returnTaskState ()
Returns all the relevant data for this model

Returns results — The dictionary contains a series of keys including Name, Probabilities,
Actions and Events.

Return type dict

rewardExpectation (observation)
Calculate the estimated reward based on the action and stimuli

This contains parts that are task dependent
Parameters observation ({int | float | tuple})- The setof stimuli
Returns
« actionExpectations (array of floats) — The expected rewards for each action
o stimuli (/ist of floats) — The processed observations

* activeStimuli (/ist of [0, 1] mapping to [False, True]) — A list of the stimuli that were
or were not present

storeState ()
Stores the state of all the important variables so that they can be accessed later

updateModel (delta, action, stimuli, stimuliFilter)
Parameters
* delta (float) - The difference between the reward and the expected reward
* action (int) - The action chosen by the model in this trialstep
e stimuli (Iist of float)-— The weights of the different stimuli in this trialstep

* stimuliFilter (1ist of bool)— A listdescribing if a stimulus cue is present
in this trialstep

6.7.2.4 model.BP module

Author Dominic Hunt

class model.BP.BP (alpha=0.3, beta=4, dirichletlnit=1, validRewards=array([0, 1]), inv-

Beta=None, **kwargs)
Bases: model.modelTemplate.Model

The Bayesian predictor model

6.7. model package a7

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

pyHPDM Documentation, Release 0.9.9

Name

The name of the class used when recording what has been used.

Type string

Parameters

alpha (float, optional)— Learning rate parameter
beta (float, optional) - Sensitivity parameter for probabilities. Default 4

invBeta (float, optional)- Inverse of sensitivity parameter. Defined as ﬁ
Default 0.2

number_actions (integer, optional)- The maximum number of valid ac-
tions the model can expect to receive. Default 2.

number_ cues (integer, optional)-—

The initial maximum number of stimuli the model can expect to receive. Default
1.

number_critics (integer, optional) — The number of different reaction
learning sets. Default number_actions*number_cues

validRewards (1ist, np.ndarray, optional)— The different reward val-
ues that can occur in the task. Default array ([0, 1])

action_codes (dict with string or int as keys and int
values, optional) — A dictionary used to convert between the action refer-
ences used by the task or dataset and references used in the models to describe the
order in which the action information is stored.

dirichletInit (float, optional)-Theinitial values for values of the dirich-
let distribution. Normally 0, 1/2 or 1. Default 1

prior (array of floatsin [0, 1], optional)— Ignored in this case

stimFunc (function, optional) — The function that transforms the stimulus
into a form the model can understand and a string to identify it later. Default is
blankStim

rewFunc (function, optional)- The function that transforms the reward into
a form the model can understand. Default is blankRew

decFunc (function, optional) — The function that takes the inter-
nal values of the model and turns them in to a decision. Default is
model.decision.discrete.weightProb

actStimMerge (dirichletVals, stimuli)
Takes the parameter to be merged by stimuli and filters it by the stimuli values

Parameters

e actStimuliParam (list of floats)-—

The list of values representing each action stimuli pair, where the stimuli will have their filtered

values merged together.

e stimFilter (array of floats or a float, optional) - The list of
active stimuli with their weightings or one weight for all. Default 1

Returns actionParams — The parameter values associated with each action

Return type list of floats

actorStimulusProbs ()
Calculates in the model-appropriate way the probability of each action.

Returns probabilities — The probabilities associated with the action choices

48

Chapter 6. Documentation

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float

pyHPDM Documentation, Release 0.9.9

Return type 1D np.ndArray of floats
calcActExpectations (dirichletVals)

calcProbabilities (actionValues)
Calculate the probabilities associated with the actions

Parameters actionValues (1D np.ndArray of floats)-—
Returns probArray — The probabilities associated with the actionValues
Return type 1D np.ndArray of floats

delta (reward, expectation, action, stimuli)
Calculates the comparison between the reward and the expectation

Parameters

* reward (float)— The reward value

* expectation (float)— The expected reward value

e action (int) - The chosen action

e stimuli ({int | float | tuple | None})— The stimuli received
Returns
Return type delta

returnTaskState ()
Returns all the relevant data for this model

Returns results — The dictionary contains a series of keys including Name, Probabilities,
Actions and Events.

Return type dict

rewardExpectation (observation)
Calculate the estimated reward based on the action and stimuli

This contains parts that are task dependent
Parameters observation ({int | float | tuple})— The setof stimuli
Returns
« actionExpectations (array of floats) — The expected rewards for each action
* stimuli (/ist of floats) — The processed observations

« activeStimuli (/ist of [0, 1] mapping to [False, True]) — A list of the stimuli that were
or were not present

storeState ()
Stores the state of all the important variables so that they can be accessed later

updateExpectations (dirichletVals)
updateModel (delta, action, stimuli, stimuliFilter)
Parameters
e delta (float)— The difference between the reward and the expected reward
* action (int)— The action chosen by the model in this trialstep
e stimuli (1ist of float)- The weights of the different stimuli in this trialstep

e stimuliFilter (1ist of bool)— A listdescribing if a stimulus cue is present
in this trialstep

6.7.

model package 49

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

pyHPDM Documentation, Release 0.9.9

6.7.2.5 model.BPE module

Author Dominic Hunt

class model.BPE.BPE (alpha=0.3, epsilon=0.1, dirichletlnit=1, validRewards=array([0, 1]),
**kwargs)
Bases: model.modelTemplate.Model

The Bayesian predictor model

Name
The name of the class used when recording what has been used.

Type string

Parameters
* alpha (float, optional)- Learning rate parameter

* epsilon (float, optional)— Noise parameter. The larger it is the less likely
the model is to choose the highest expected reward

* number_actions (integer, optional)- The maximum number of valid ac-
tions the model can expect to receive. Default 2.

* number_cues (integer, optional)-

The initial maximum number of stimuli the model can expect to receive. Default
1.

e number_critics (integer, optional) — The number of different reaction
learning sets. Default number_actions*number_cues

* validRewards (list, np.ndarray, optional) - The different reward val-
ues that can occur in the task. Default array ([0, 1])

* action_codes (dict with string or int as keys and int
values, optional) — A dictionary used to convert between the action refer-
ences used by the task or dataset and references used in the models to describe the
order in which the action information is stored.

e dirichletInit (float, optional)-The initial values for values of the dirich-
let distribution. Normally 0, 1/2 or 1. Default 1

* prior (array of floatsin [0, 1], optional) —Ignored in this case

e stimFunc (function, optional) — The function that transforms the stimulus
into a form the model can understand and a string to identify it later. Default is
blankStim

e rewFunc (function, optional)— The function that transforms the reward into
a form the model can understand. Default is blankRew

* decFunc (function, optional) - The function that takes the inter-
nal values of the model and turns them in to a decision. Default is
model.decision.discrete.weightProb

See also:
model . BP This model is heavily based on that one

actStimMerge (dirichletVals, stimuli)
Takes the parameter to be merged by stimuli and filters it by the stimuli values

Parameters

e actStimuliParam(list of floats)-—

50 Chapter 6. Documentation

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float

pyHPDM Documentation, Release 0.9.9

The list of values representing each action stimuli pair, where the stimuli will have their filtered
values merged together.

e stimFilter (array of floats or a float, optional) — The list of
active stimuli with their weightings or one weight for all. Default 1

Returns actionParams — The parameter values associated with each action
Return type list of floats

actorStimulusProbs ()
Calculates in the model-appropriate way the probability of each action.

Returns probabilities — The probabilities associated with the action choices
Return type 1D ndArray of floats
calcActExpectations (dirichletVals)

calcProbabilities (actionValues)
Calculate the probabilities associated with the actions

Parameters actionvValues (1D ndArray of floats)-
Returns probArray — The probabilities associated with the actionValues
Return type 1D ndArray of floats

delta (reward, expectation, action, stimuli)
Calculates the comparison between the reward and the expectation

Parameters

e reward (float)— The reward value

* expectation (float)— The expected reward value

e action (int)— The chosen action

e stimuli ({int | float | tuple | None})— The stimuli received
Returns
Return type delta

returnTaskState ()
Returns all the relevant data for this model

Returns results — The dictionary contains a series of keys including Name, Probabilities,
Actions and Events.

Return type dict

rewardExpectation (observation)
Calculate the estimated reward based on the action and stimuli

This contains parts that are task dependent
Parameters observation ({int | float | tuple})— The setof stimuli
Returns
* actionExpectations (array of floats) — The expected rewards for each action
o stimuli (/ist of floats) — The processed observations

* activeStimuli (/ist of [0, 1] mapping to [False, True]) — A list of the stimuli that were
or were not present

storeState ()
Stores the state of all the important variables so that they can be accessed later

updateExpectations (dirichletVals)

6.7.

model package 51

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict

pyHPDM Documentation, Release 0.9.9

updateModel (delta, action, stimuli, stimuliFilter)
Parameters
* delta (float) - The difference between the reward and the expected reward
* action (int) - The action chosen by the model in this trialstep
e stimuli (I1ist of float)-— The weights of the different stimuli in this trialstep

* stimuliFilter (1ist of bool)— A listdescribing if a stimulus cue is present
in this trialstep

6.7.2.6 model.BPV module

Author Dominic Hunt

class model.BPV.BPV (alpha=0.3, dirichletlnit=1, validRewards=array([0, 1]), **kwargs)
Bases: model.modelTemplate.Model

The Bayesian predictor model

Name
The name of the class used when recording what has been used.

Type string

Parameters
* alpha (float, optional)- Learning rate parameter

* number_actions (integer, optional)- The maximum number of valid ac-
tions the model can expect to receive. Default 2.

* number_cues (integer, optional)-

The initial maximum number of stimuli the model can expect to receive. Default
1.

e number_critics (integer, optional) — The number of different reaction
learning sets. Default number_actions*number_cues

* validRewards (list, np.ndarray, optional)— The different reward val-
ues that can occur in the task. Default array ([0, 1])

* action_codes (dict with string or int as keys and int
values, optional) — A dictionary used to convert between the action refer-
ences used by the task or dataset and references used in the models to describe the
order in which the action information is stored.

e dirichletInit (float, optional)-The initial values for values of the dirich-
let distribution. Normally 0, 1/2 or 1. Default 1

* prior (array of floatsin [0, 1], optional) —Ignored in this case

e stimFunc (function, optional) — The function that transforms the stimulus
into a form the model can understand and a string to identify it later. Default is
blankStim

e rewFunc (function, optional)— The function that transforms the reward into
a form the model can understand. Default is blankRew

* decFunc (function, optional) - The function that takes the inter-
nal values of the model and turns them in to a decision. Default is
model.decision.discrete.weightProb

actStimMerge (dirichletVals, stimuli)
Takes the parameter to be merged by stimuli and filters it by the stimuli values

52 Chapter 6. Documentation

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float

pyHPDM Documentation, Release 0.9.9

Parameters
e actStimuliParam (list of floats)-—

The list of values representing each action stimuli pair, where the stimuli will have their filtered
values merged together.

e stimFilter (array of floats or a float, optional)— The list of
active stimuli with their weightings or one weight for all. Default 1

Returns actionParams — The parameter values associated with each action
Return type list of floats

actorStimulusProbs ()
Calculates in the model-appropriate way the probability of each action.

Returns probabilities — The probabilities associated with the action choices
Return type 1D np.ndarray of floats
calcActExpectations (dirichletVals)

calcProbabilities (actionValues)
Calculate the probabilities associated with the actions

Parameters actionValues (ID np.ndarray of floats)-—
Returns probArray — The probabilities associated with the actionValues
Return type 1D np.ndarray of floats

delta (reward, expectation, action, stimuli)
Calculates the comparison between the reward and the expectation

Parameters

e reward (float)— The reward value

* expectation (float) - The expected reward value

e action (int)— The chosen action

e stimuli ({int | float | tuple | None})- The stimuli received
Returns
Return type delta

returnTaskState ()
Returns all the relevant data for this model

Returns results — The dictionary contains a series of keys including Name, Probabilities,
Actions and Events.

Return type dict

rewardExpectation (observation)
Calculate the estimated reward based on the action and stimuli

This contains parts that are task dependent
Parameters observation ({int | float | tuple})- The setof stimuli
Returns
« actionExpectations (array of floats) — The expected rewards for each action
o stimuli (/ist of floats) — The processed observations

* activeStimuli (/ist of [0, 1] mapping to [False, True]) — A list of the stimuli that were
or were not present

6.7. model package 53

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict

pyHPDM Documentation, Release 0.9.9

storeState ()
Stores the state of all the important variables so that they can be accessed later

updateExpectations (dirichletVals)
updateModel (delta, action, stimuli, stimuliFilter)
Parameters
e delta (float) - The difference between the reward and the expected reward
* action (int) - The action chosen by the model in this trialstep
e stimuli (1ist of float)-The weights of the different stimuli in this trialstep

e stimuliFilter (1ist of bool)— A listdescribing if a stimulus cue is present
in this trialstep

6.7.2.7 model.OpAL module

Author Dominic Hunt

Reference Based on the paper Opponent actor learning (OpAL): Modeling interactive effects of
striatal dopamine on reinforcement learning and choice incentive. Collins, A. G. E., & Frank,
M. J. (2014). Psychological Review, 121(3), 337-66. doi:10.1037/a0037015

class model.OpAL.OpAL (alpha=0.3, beta=4, rho=0, invBeta=None, alphaCrit=None, be-
taGo=None, betaNogo=None, alphaGo=None, alphaNogo=None, al-
phaGoDiff=None, alphaNogoDiff=None, alphaGoNogoDiff=None, ex-

pect=None, expectGo=None, **kwargs)
Bases: model.modelTemplate.Model

The Opponent actor learning model

Name
The name of the class used when recording what has been used.

Type string

currAction
The current action chosen by the model. Used to pass participant action to model when fitting

Type int

Parameters
* alpha (float, optional)-— Learning rate parameter, used as either the

* alphaGoNogoDiff (float, optional) — The difference between alphaGo
and alphaNogo. Default is None. If not None will overwrite alphaNogo ay =
ag —a§

* alphaCrit (float, optional)— The critic learning rate. Default is alpha

* alphaGo (float, optional) - Learning rate parameter for Go, the positive part
of the actor learning Default is alpha

* alphaNogo (float, optional)-Learning rate parameter for Nogo, the negative
part of the actor learning Default is alpha

* alphaGoDiff (float, optional) - The difference between alphaCrit and
alphaGo. The default is None If not None and alphaNogoDiff is also not None,
it will overwrite the alphaGo parameter ag = a¢ + «

* alphaNogoDiff (float, optional) — The difference between alphaCrit
and alphaNogo. The default is None If not None and alphaGoDiff is also not
None, it will overwrite the alphaNogo parameter ay = a¢ + «

54 Chapter 6. Documentation

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

pyHPDM Documentation, Release 0.9.9

* beta (float, optional)— Sensitivity parameter for probabilities. Also known as
an exploration- exploitation parameter. Defined as (3 in the paper

* invBeta (float, optional)— Inverse of sensitivity parameter for the probabili-

: 1
ties. Defined as 7 Default 0. 2
* rho (float, optional)- The asymmetry between the actor weights. p = g —

B=pn+P

* number_actions (integer, optional)- The maximum number of valid ac-
tions the model can expect to receive. Default 2.

* number_cues (integer, optional)-

The initial maximum number of stimuli the model can expect to receive. Default
1.

* number_ critics (integer, optional) — The number of different reaction
learning sets. Default number_actions*number_cues

* action_codes (dict with string or int as keys and int
values, optional) — A dictionary used to convert between the action refer-
ences used by the task or dataset and references used in the models to describe the
order in which the action information is stored.

* prior (array of floats in [0, 1], optional) — The prior probability of of the states
being the correct one. Default ones ((number_actions, number_cues)) /
number_critics)

* expect (array of floats, optional) — The initialisation of the the
expected reward. Default ones ((number_actions, number_cues)) /
number_critics

* expectGo (array of floats, optional) - The initialisation of the the ex-
pected go and nogo. Default ones ((number_actions, number_cues)) /
number_critics

e stimFunc (function, optional) — The function that transforms the stimulus
into a form the model can understand and a string to identify it later. Default is
blankStim

* rewFunc (function, optional)— The function that transforms the reward into
a form the model can understand. Default is blankRew

e decFunc (function, optional) - The function that takes the inter-
nal values of the model and turns them in to a decision. Default is
model.decision.discrete.weightProb

Notes

Actor: The chosen action is updated with
5d,t =Tt — Ed,t
Egt+1=FEqr +apdq:
Critic: The chosen action is updated with
Gatr1=Gar +agGqiba
Nd,t+1 = Nd,t - aNNd,t5d,t
Probabilities: The probabilities for all actions are calculated using
Agr =1+ p)Gar — (1 —p)Nay

eBAd
Py

T Dgep €74

6.7. model package 55

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

pyHPDM Documentation, Release 0.9.9

actorStimulusProbs ()
Calculates in the model-appropriate way the probability of each action.

Returns probabilities — The probabilities associated with the action choices
Return type 1D ndArray of floats

calcProbabilities (actionValues)
Calculate the probabilities associated with the actions

Parameters actionvValues (1D ndArray of floats)-
Returns probArray — The probabilities associated with the actionValues
Return type 1D ndArray of floats

delta (reward, expectation, action, stimuli)
Calculates the comparison between the reward and the expectation

Parameters

e reward (f1oat)— The reward value

* expectation (float)— The expected reward value

* action (int)— The chosen action

e stimuli ({int | float | tuple | None}) - The stimuli received
Returns
Return type delta

returnTaskState ()
Returns all the relevant data for this model

Returns results — The dictionary contains a series of keys including Name, Probabilities,
Actions and Events.

Return type dict

rewardExpectation (observation)
Calculate the estimated reward based on the action and stimuli

This contains parts that are task dependent
Parameters observation ({int | float | tuple})- The setof stimuli
Returns
 actionExpectations (array of floats) — The expected rewards for each action
« stimuli (/ist of floats) — The processed observations

* activeStimuli (list of [0, 1] mapping to [False, True]) — A list of the stimuli that were
or were not present

storeState ()
Stores the state of all the important variables so that they can be accessed later

updateModel (delta, action, stimuli, stimuliFilter)
Parameters
* delta (float) - The difference between the reward and the expected reward
* action (int) - The action chosen by the model in this trialstep
e stimuli (1ist of float)-The weights of the different stimuli in this trialstep

* stimuliFilter (list of bool)— A listdescribing if a stimulus cue is present
in this trialstep

56 Chapter 6. Documentation

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

pyHPDM Documentation, Release 0.9.9

6.7.2.8 model.OpALE module

Author Dominic Hunt

Reference Based on the paper Opponent actor learning (OpAL): Modeling interactive effects of
striatal dopamine on reinforcement learning and choice incentive. Collins, A. G. E., & Frank,
M. J. (2014). Psychological Review, 121(3), 337-66. doi:10.1037/a0037015

class model.OpALE.OpALE (alpha=0.3, epsilon=0.3, rho=0, alphaCrit=None, alphaGo=None,

alphaNogo=None, alphaGoDiff=None, alphaNogoDiff=None, al-
phaGoNogoDiff=None, expect=None, expectGo=None, **kwargs)

Bases: model.modelTemplate.Model

The Opponent actor learning model

Name

The name of the class used when recording what has been used.

Type string

currAction
The current action chosen by the model. Used to pass participant action to model when fitting

Type int

Parameters

alpha (float, optional)- Learning rate parameter, used as either the

alphaGoNogoDiff (float, optional) — The difference between alphaGo
and alphaNogo. Default is None. If not None will overwrite alphaNogo ay =
ag — as

alphaCrit (float, optional)- The critic learning rate. Default is alpha

alphaGo (float, optional)— Learning rate parameter for Go, the positive part
of the actor learning Default is alpha

alphaNogo (float, optional)- Learning rate parameter for Nogo, the negative
part of the actor learning Default is alpha

alphaGoDiff (float, optional) - The difference between alphaCrit and
alphaGo. The default is None If not None and alphaNogoDiff is also not None,
it will overwrite the alphaGo parameter ag = a¢ + «

alphaNogoDiff (float, optional) — The difference between alphaCrit
and alphaNogo. The default is None If not None and alphaGoDiff is also not
None, it will overwrite the alphaNogo parameter ay = ac + «

epsilon (float, optional) — Sensitivity parameter for probabilities. Also
known as an exploration- exploitation parameter. Defined as € in the paper

rho (float, optional) - The asymmetry between the actor weights. p = eg —
€E=€N t+ €

number_ actions (integer, optional)- The maximum number of valid ac-
tions the model can expect to receive. Default 2.

number cues (integer, optional)-—

The initial maximum number of stimuli the model can expect to receive. Default
1.

number_ critics (integer, optional) — The number of different reaction
learning sets. Default number_actions*number_cues

6.7. model package

57

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

pyHPDM Documentation, Release 0.9.9

* action_codes (dict with string or int as keys and int
values, optional) — A dictionary used to convert between the action refer-
ences used by the task or dataset and references used in the models to describe the
order in which the action information is stored.

* prior (array of floats in [0, 1], optional) — The prior probability of of the states
being the correct one. Default ones ((number_actions, number_cues)) /
number_critics)

* expect (array of floats, optional) — The initialisation of the the
expected reward. Default ones ((number_actions, number_cues)) /
number_critics

* expectGo (array of floats, optional) - The initialisation of the the ex-
pected go and nogo. Default ones ((number_actions, number_cues)) /
number_critics

e stimFunc (function, optional) — The function that transforms the stimulus
into a form the model can understand and a string to identify it later. Default is
blankStim

e rewFunc (function, optional)— The function that transforms the reward into
a form the model can understand. Default is blankRew

e decFunc (function, optional) - The function that takes the inter-
nal values of the model and turns them in to a decision. Default is
model.decision.discrete.weightProb

Notes

Actor: The chosen action is updated with
(Sd,t =Tt — Ed,t
Eqtv1=FEqt+agpdq:

Critic: The chosen action is updated with

Gat+1=Gar +acGardas
Ngt41=Ng+ —oanNg 0+

Probabilities: The probabilities for all actions are calculated using

Agr =1+ p)Gar— (1 —p)Nay

P eEAde,
d,t = A
Daep €4

actorStimulusProbs ()
Calculates in the model-appropriate way the probability of each action.

Returns probabilities — The probabilities associated with the action choices
Return type 1D ndArray of floats

calcProbabilities (actionValues)
Calculate the probabilities associated with the actions

Parameters actionValues (1D ndArray of floats)-
Returns probArray — The probabilities associated with the actionValues
Return type 1D ndArray of floats

delta (reward, expectation, action, stimuli)
Calculates the comparison between the reward and the expectation

58 Chapter 6. Documentation

pyHPDM Documentation, Release 0.9.9

Parameters

e reward (float)— The reward value

* expectation (float) - The expected reward value

e action (int)— The chosen action

e stimuli ({int | float | tuple | None})- The stimuli received
Returns
Return type delta

returnTaskState ()
Returns all the relevant data for this model

Returns results — The dictionary contains a series of keys including Name, Probabilities,
Actions and Events.

Return type dict

rewardExpectation (observation)
Calculate the estimated reward based on the action and stimuli

This contains parts that are task dependent
Parameters observation ({int | float | tuple})- The setof stimuli
Returns
« actionExpectations (array of floats) — The expected rewards for each action
« stimuli (/ist of floats) — The processed observations

* activeStimuli (/ist of [0, 1] mapping to [False, True]) — A list of the stimuli that were
or were not present

storeState ()
Stores the state of all the important variables so that they can be accessed later

updateModel (delta, action, stimuli, stimuliFilter)
Parameters
* delta (float) - The difference between the reward and the expected reward
* action (int) - The action chosen by the model in this trialstep
e stimuli (1ist of float)-The weights of the different stimuli in this trialstep

e stimuliFilter (1ist of bool)— A listdescribing if a stimulus cue is present
in this trialstep

6.7.2.9 model.OpALS module

Author Dominic Hunt

Reference Based on the paper Opponent actor learning (OpAL): Modeling interactive effects of
striatal dopamine on reinforcement learning and choice incentive. Collins, A. G. E., & Frank,
M. J. (2014). Psychological Review, 121(3), 337-66. doi:10.1037/a0037015

class model.OpALS.OpALS (alpha=0.3, beta=4, rho=0, saturateVal=10, invBeta=None, al-
phaCrit=None, betaGo=None, betaNogo=None, alphaGo=None,
alphaNogo=None, alphaGoDiff=None, alphaNogoDiff=None, al-
phaGoNogoDiff=None, expect=None, expectGo=None, **kwargs)
Bases: model.modelTemplate.Model
The Opponent actor learning model modified to have saturation values

The saturation values are the same for the actor and critic learners

6.7. model package 59

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

pyHPDM Documentation, Release 0.9.9

Name
The name of the class used when recording what has been used.

Type string

currAction
The current action chosen by the model. Used to pass participant action to model when fitting

Type int

Parameters
* alpha (float, optional)- Learning rate parameter, used as either the

* alphaGoNogoDiff (float, optional) — The difference between alphaGo
and alphaNogo. Default is None. If not None will overwrite alphaNogo ay =
ag — ag

* alphaCrit (float, optional)— The critic learning rate. Default is alpha

* alphaGo (float, optional)— Learning rate parameter for Go, the positive part
of the actor learning Default is alpha

* alphaNogo (float, optional)-Learning rate parameter for Nogo, the negative
part of the actor learning Default is alpha

* alphaGoDiff (float, optional) — The difference between alphaCrit and
alphaGo. The default is None If not None and alphaNogoDi ff is also not None,
it will overwrite the alphaGo parameter ag = a¢ + o

* alphaNogoDiff (float, optional) — The difference between alphaCrit
and alphaNogo. The default is None If not None and alphaGoDiff is also not
None, it will overwrite the alphaNogo parameter ay = ac + o

*» beta(float, optional)- Sensitivity parameter for probabilities. Also known as
an exploration- exploitation parameter. Defined as (3 in the paper

* invBeta (float, optional)— Inverse of sensitivity parameter for the probabili-

. 1
ties. Defined as T Default 0.2

e rho (float, optional)- The asymmetry between the actor weights. p = g —
B=pPn+p

* number actions (integer, optional)- The maximum number of valid ac-
tions the model can expect to receive. Default 2.

* number_cues (integer, optional)-

The initial maximum number of stimuli the model can expect to receive. Default
L.

e number_critics (integer, optional) — The number of different reaction
learning sets. Default number_actions*number_cues

* action_codes (dict with string or int as keys and int
values, optional) — A dictionary used to convert between the action refer-
ences used by the task or dataset and references used in the models to describe the
order in which the action information is stored.

* prior (array of floats in [0, 1], optional) — The prior probability of of the states
being the correct one. Default ones ((number_actions, number_cues)) /
number_critics)

* expect (array of floats, optional) — The initialisation of the the
expected reward. Default ones ((number_actions, number_cues)) /
number_critics

60 Chapter 6. Documentation

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

pyHPDM Documentation, Release 0.9.9

* expectGo (array of floats, optional) — The initialisation of the the ex-
pected go and nogo. Default ones ((number_actions, number_cues)) /
number_critics

e saturateVal (float, optional)- The saturation value for the model. Default
is 10

e stimFunc (function, optional)— The function that transforms the stimulus
into a form the model can understand and a string to identify it later. Default is
blankStim

e rewFunc (function, optional)— The function that transforms the reward into
a form the model can understand. Default is blankRew

e decFunc (function, optional) - The function that takes the inter-
nal values of the model and turns them in to a decision. Default is
model.decision.discrete.weightProb

Notes

Actor: The chosen action is updated with

5d,t =Tt — Ed,t

E
Eit11=FEqt+ agda(l — g’t)
Critic: The chosen action is updated with
Ga
Gai+1=Gar +acGq104.4(1 — S’t)
N,

Nat+1 = Ngt —anNgida. (1 — S’)

Probabilities: The probabilities for all actions are calculated using

Age =(1+p)Gar— (1 —p)Nay
eBAd

actorStimulusProbs ()
Calculates in the model-appropriate way the probability of each action.

Returns probabilities — The probabilities associated with the action choices
Return type 1D ndArray of floats

calcProbabilities (actionValues)
Calculate the probabilities associated with the actions

Parameters actionValues (1D ndArray of floats)-
Returns probArray — The probabilities associated with the actionValues
Return type 1D ndArray of floats

delta (reward, expectation, action, stimuli)
Calculates the comparison between the reward and the expectation

Parameters
e reward (f1oat)— The reward value
* expectation (float)— The expected reward value

e action (int)— The chosen action

6.7. model package 61

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

pyHPDM Documentation, Release 0.9.9

e stimuli ({int | float | tuple | None})- The stimuli received
Returns
Return type delta

returnTaskState ()
Returns all the relevant data for this model

Returns results — The dictionary contains a series of keys including Name, Probabilities,
Actions and Events.

Return type dict

rewardExpectation (observation)
Calculate the estimated reward based on the action and stimuli

This contains parts that are task dependent
Parameters observation ({int | float | tuple})- The set of stimuli
Returns
« actionExpectations (array of floats) — The expected rewards for each action
o stimuli (/ist of floats) — The processed observations

* activeStimuli (/ist of [0, 1] mapping to [False, True]) — A list of the stimuli that were
or were not present

storeState ()
Stores the state of all the important variables so that they can be accessed later

updateModel (delta, action, stimuli, stimuliFilter)
Parameters
* delta (float) - The difference between the reward and the expected reward
* action (int) - The action chosen by the model in this trialstep
e stimuli (1ist of float)-The weights of the different stimuli in this trialstep

* stimuliFilter (list of bool)— A listdescribing if a stimulus cue is present
in this trialstep

6.7.2.10 model.OpALSE module

Author Dominic Hunt

Reference Based on the paper Opponent actor learning (OpAL): Modeling interactive effects of
striatal dopamine on reinforcement learning and choice incentive. Collins, A. G. E., & Frank,
M. J. (2014). Psychological Review, 121(3), 337-66. doi:10.1037/a0037015

class model.OpALSE.OpALSE (alpha=0.3, epsilon=0.3, rho=0, saturateVal=10, alphaCrit=None,
alphaGo=None, alphaNogo=None, alphaGoDiff=None, al-
phaNogoDiff=None, alphaGoNogoDiff=None, expect=None,

expectGo=None, **kwargs)
Bases: model.modelTemplate.Model

The Opponent actor learning model modified to have saturation values
The saturation values are the same for the actor and critic learners

Name
The name of the class used when recording what has been used.

Type string

currAction
The current action chosen by the model. Used to pass participant action to model when fitting

62 Chapter 6. Documentation

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

pyHPDM Documentation, Release 0.9.9

Type int

Parameters
* alpha (float, optional)— Learning rate parameter, used as either the

* alphaGoNogoDiff (float, optional) — The difference between alphaGo
and alphaNogo. Default is None. If not None will overwrite alphaNogo ay =
ag —ag

* alphaCrit (float, optional)— The critic learning rate. Default is alpha

* alphaGo (float, optional) - Learning rate parameter for Go, the positive part
of the actor learning Default is alpha

* alphaNogo (float, optional)-—Learning rate parameter for Nogo, the negative
part of the actor learning Default is alpha

* alphaGoDiff (float, optional) - The difference between alphaCrit and
alphaGo. The default is None If not None and alphaNogoDiff is also not None,
it will overwrite the alphaGo parameter ag = a¢ + «

* alphaNogoDiff (float, optional) — The difference between alphaCrit
and alphaNogo. The default is None If not None and alphaGoDiff is also not
None, it will overwrite the alphaNogo parameter ay = ac + «

* epsilon (float, optional) — Sensitivity parameter for probabilities. Also
known as an exploration- exploitation parameter. Defined as € in the paper

* rho (float, optional)- The asymmetry between the actor weights. p = eg —
€E=€N t+ €

e number_actions (integer, optional)- The maximum number of valid ac-
tions the model can expect to receive. Default 2.

* number_cues (integer, optional)-

The initial maximum number of stimuli the model can expect to receive. Default
1.

* number_critics (integer, optional) — The number of different reaction
learning sets. Default number_actions*number_cues

* action_codes (dict with string or int as keys and int
values, optional) — A dictionary used to convert between the action refer-
ences used by the task or dataset and references used in the models to describe the
order in which the action information is stored.

* prior (array of floats in [0, 1], optional) — The prior probability of of the states
being the correct one. Default ones ((number_actions, number_cues)) /
number_critics)

* expect (array of floats, optional) — The initialisation of the the
expected reward. Default ones ((number_actions, number_cues)) /
number_critics

* expectGo (array of floats, optional) — The initialisation of the the ex-
pected go and nogo. Default ones ((number_actions, number_cues)) /
number_critics

* saturateVal (float, optional)- The saturation value for the model. Default
is 10

e stimFunc (function, optional)— The function that transforms the stimulus
into a form the model can understand and a string to identify it later. Default is
blankStim

6.7. model package 63

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

pyHPDM Documentation, Release 0.9.9

e rewFunc (function, optional)— The function that transforms the reward into
a form the model can understand. Default is blankRew

* decFunc (function, optional) - The function that takes the inter-
nal values of the model and turns them in to a decision. Default is
model.decision.discrete.weightProb

Notes

Actor: The chosen action is updated with

5d,t =Tt — Ed,t

Ey
Eii11=FEq1+ agdg(l — S’t)
Critic: The chosen action is updated with
G
Gait1=Gar+acGq1044(1 — g,"t)
Ny
Nat+1 = Nyt — anNg 6.1 — S7t)

Probabilities: The probabilities for all actions are calculated using

Age=(1+p)Gar — (1 —p)Nay,
eGAd,t

Pif= =————
’ €A
>dep €4

actorStimulusProbs ()
Calculates in the model-appropriate way the probability of each action.

Returns probabilities — The probabilities associated with the action choices
Return type 1D ndArray of floats

calcProbabilities (actionValues)
Calculate the probabilities associated with the actions

Parameters actionValues (1D ndArray of floats)-
Returns probArray — The probabilities associated with the actionValues
Return type 1D ndArray of floats

delta (reward, expectation, action, stimuli)
Calculates the comparison between the reward and the expectation

Parameters

e reward (float)— The reward value

* expectation (float) - The expected reward value

e action (int)— The chosen action

e stimuli ({int | float | tuple | None})- The stimuli received
Returns
Return type delta

returnTaskState ()
Returns all the relevant data for this model

Returns results — The dictionary contains a series of keys including Name, Probabilities,
Actions and Events.

64 Chapter 6. Documentation

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

pyHPDM Documentation, Release 0.9.9

Return type dict

rewardExpectation (observation)
Calculate the estimated reward based on the action and stimuli

This contains parts that are task dependent
Parameters observation ({int | float | tuple})- The setof stimuli
Returns
« actionExpectations (array of floats) — The expected rewards for each action
o stimuli (/ist of floats) — The processed observations

* activeStimuli (/ist of [0, 1] mapping to [False, True]) — A list of the stimuli that were
or were not present

storeState ()
Stores the state of all the important variables so that they can be accessed later

updateModel (delta, action, stimuli, stimuliFilter)
Parameters
e delta (f1oat)— The difference between the reward and the expected reward
e action (int)— The action chosen by the model in this trialstep
e stimuli (Iist of float)-— The weights of the different stimuli in this trialstep

* stimuliFilter (1ist of bool)— A listdescribing if a stimulus cue is present
in this trialstep

6.7.2.11 model.OpAL_H module

Author Dominic Hunt

Reference Based on the paper Opponent actor learning (OpAL): Modeling interactive effects of
striatal dopamine on reinforcement learning and choice incentive. Collins, A. G. E., & Frank,
M. J. (2014). Psychological Review, 121(3), 337-66. doi:10.1037/a0037015

class model.OpAL_H.OpAL_H (alpha=0.3, beta=4, rho=0, invBeta=None, alphaCrit=None, be-
taGo=None, betaNogo=None, alphaGo=None, alphaNogo=None,
alphaGoDiff=None, alphaNogoDiff=None, alphaGoNogoD-

iff=None, expect=None, expectGo=None, **kwargs)
Bases: model.modelTemplate.Model

The Opponent actor learning model without Hebbian learning

Name
The name of the class used when recording what has been used.

Type string

currAction
The current action chosen by the model. Used to pass participant action to model when fitting

Type int

Parameters
* alpha (float, optional)-— Learning rate parameter, used as either the

* alphaGoNogoDiff (float, optional) — The difference between alphaGo
and alphaNogo. Default is None. If not None will overwrite alphaNogo ay =
ag — Q§

* alphaCrit (float, optional)—- The critic learning rate. Default is alpha

6.7. model package

65

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

pyHPDM Documentation, Release 0.9.9

* alphaGo (float, optional)— Learning rate parameter for Go, the positive part
of the actor learning Default is alpha

* alphaNogo (float, optional)-—Learning rate parameter for Nogo, the negative
part of the actor learning Default is alpha

* alphaGoDiff (float, optional) - The difference between alphaCrit and
alphaGo. The default is None If not None and alphaNogoDi ff is also not None,
it will overwrite the alphaGo parameter ag = a¢ + o

* alphaNogoDiff (float, optional) — The difference between alphaCrit
and alphaNogo. The default is None If not None and alphaGoDiff is also not
None, it will overwrite the alphaNogo parameter ay = ac + o

* beta(float, optional)-— Sensitivity parameter for probabilities. Also known as
an exploration- exploitation parameter. Defined as (3 in the paper

* invBeta (float, optional)- Inverse of sensitivity parameter for the probabili-

. 1
ties. Defined as T Default 0.2

e rho (float, optional)- The asymmetry between the actor weights. p = g —

B=PBn+8

* number_actions (integer, optional)- The maximum number of valid ac-
tions the model can expect to receive. Default 2.

* number_cues (integer, optional)-

The initial maximum number of stimuli the model can expect to receive. Default
1.

e number_ critics (integer, optional) — The number of different reaction
learning sets. Default number_actions*number_cues

* action_codes (dict with string or int as keys and int
values, optional) — A dictionary used to convert between the action refer-
ences used by the task or dataset and references used in the models to describe the
order in which the action information is stored.

* prior (array of floats in [0, 1], optional) — The prior probability of of the states
being the correct one. Default ones ((number_actions, number_cues)) /
number_critics)

* expect (array of floats, optional) — The initialisation of the the
expected reward. Default ones ((number_actions, number_cues)) /
number_critics

* expectGo (array of floats, optional) - The initialisation of the the ex-
pected go and nogo. Default ones ((number_actions, number_cues)) /
number_critics

e stimFunc (function, optional)— The function that transforms the stimulus
into a form the model can understand and a string to identify it later. Default is
blankStim

e rewFunc (function, optional)- The function that transforms the reward into
a form the model can understand. Default is blankRew

e decFunc (function, optional) - The function that takes the inter-
nal values of the model and turns them in to a decision. Default is
model.decision.discrete.weightProb

66 Chapter 6. Documentation

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

pyHPDM Documentation, Release 0.9.9

Notes

Actor: The chosen action is updated with

5d,t =Tt — Ed,t
Eitv1=FEq1+apldq:

Critic: The chosen action is updated with

Gaiy1 = Gar +agdas
Nd,t+1 = Nd,t - aN5d,t

Probabilities: The probabilities for all actions are calculated using

Agr = (1+ p)Gd,t —(1- P)Nd,t
BAd
Py

T >aep €’

actorStimulusProbs ()
Calculates in the model-appropriate way the probability of each action.

Returns probabilities — The probabilities associated with the action choices
Return type 1D ndArray of floats

calcProbabilities (actionValues)
Calculate the probabilities associated with the actions

Parameters actionValues (1D ndArray of floats)-—
Returns probArray — The probabilities associated with the actionValues
Return type 1D ndArray of floats

delta (reward, expectation, action, stimuli)
Calculates the comparison between the reward and the expectation

Parameters

e reward (float)— The reward value

* expectation (float) - The expected reward value

e action (int)— The chosen action

e stimuli ({int | float | tuple | None})- The stimuli received
Returns
Return type delta

returnTaskState ()
Returns all the relevant data for this model

Returns results — The dictionary contains a series of keys including Name, Probabilities,
Actions and Events.

Return type dict

rewardExpectation (observation)
Calculate the estimated reward based on the action and stimuli

This contains parts that are task dependent
Parameters observation ({int | float | tuple})- The setof stimuli
Returns

« actionExpectations (array of floats) — The expected rewards for each action

6.7. model package 67

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict

pyHPDM Documentation, Release 0.9.9

« stimuli (/ist of floats) — The processed observations

* activeStimuli (/ist of [0, 1] mapping to [False, True]) — A list of the stimuli that were
or were not present

storeState ()
Stores the state of all the important variables so that they can be accessed later

updateModel (delta, action, stimuli, stimuliFilter)
Parameters
* delta (f1oat) - The difference between the reward and the expected reward
* action (int)— The action chosen by the model in this trialstep
e stimuli (Iist of float)- The weights of the different stimuli in this trialstep

e stimuliFilter (1ist of bool)— Alistdescribing if a stimulus cue is present
in this trialstep

6.7.2.12 model.OpAL_HE module

Author Dominic Hunt

Reference Based on the paper Opponent actor learning (OpAL): Modeling interactive effects of
striatal dopamine on reinforcement learning and choice incentive. Collins, A. G. E., & Frank,
M. J. (2014). Psychological Review, 121(3), 337-66. doi:10.1037/a0037015

class model.OpAL_HE.OpAL_HE (alpha=0.3, epsilon=0.3, rho=0, alphaCrit=None, al-
phaGo=None, alphaNogo=None, alphaGoDiff=None, al-
phaNogoDiff=None, alphaGoNogoDiff=None, expect=None,

expectGo=None, **kwargs)
Bases: model.modelTemplate.Model

The Opponent actor learning model without Hebbian learning

Name
The name of the class used when recording what has been used.

Type string

currAction
The current action chosen by the model. Used to pass participant action to model when fitting

Type int

Parameters
* alpha (float, optional)- Learning rate parameter, used as either the

* alphaGoNogoDiff (float, optional) — The difference between alphaGo
and alphaNogo. Default is None. If not None will overwrite alphaNogo ay =
ag —ag

* alphaCrit (float, optional)— The critic learning rate. Default is alpha

* alphaGo (float, optional) - Learning rate parameter for Go, the positive part
of the actor learning Default is alpha

* alphaNogo (float, optional)-Learning rate parameter for Nogo, the negative
part of the actor learning Default is alpha

* alphaGoDiff (float, optional) — The difference between alphaCrit and
alphaGo. The default is None If not None and alphaNogoDi ff is also not None,
it will overwrite the alphaGo parameter ag = a¢ + o

68 Chapter 6. Documentation

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

pyHPDM Documentation, Release 0.9.9

* alphaNogoDiff (float, optional) — The difference between alphaCrit
and alphaNogo. The default is None If not None and alphaGoDiff is also not
None, it will overwrite the alphaNogo parameter ay = a¢ + «

* epsilon (float, optional) — Sensitivity parameter for probabilities. Also
known as an exploration- exploitation parameter. Defined as € in the paper

* rho (float, optional)- The asymmetry between the actor weights. p = eg —
€E=€N + €

* number_actions (integer, optional)- The maximum number of valid ac-
tions the model can expect to receive. Default 2.

* number_cues (integer, optional)-

The initial maximum number of stimuli the model can expect to receive. Default
1.

e number_ critics (integer, optional) — The number of different reaction
learning sets. Default number_actions*number_cues

* action_codes (dict with string or int as keys and int
values, optional) — A dictionary used to convert between the action refer-
ences used by the task or dataset and references used in the models to describe the
order in which the action information is stored.

* prior (array of floats in [0, 1], optional) — The prior probability of of the states
being the correct one. Default ones ((number_actions, number_cues)) /
number_critics)

e expect (array of floats, optional) — The initialisation of the the
expected reward. Default ones ((number_actions, number_cues)) /
number_critics

* expectGo (array of floats, optional) - The initialisation of the the ex-
pected go and nogo. Default ones ((number_actions, number_cues)) /
number_critics

e stimFunc (function, optional)— The function that transforms the stimulus
into a form the model can understand and a string to identify it later. Default is
blankStim

e rewFunc (function, optional)— The function that transforms the reward into
a form the model can understand. Default is blankRew

e decFunc (function, optional) - The function that takes the inter-
nal values of the model and turns them in to a decision. Default is
model.decision.discrete.weightProb

Notes

Actor: The chosen action is updated with
5d,t =Ty — Ed,t
Ejt11=FEqr+ agdas
Critic: The chosen action is updated with
Gat+1 = Gar + agla
Nd,t+1 = Nd,t - 04N6d,t
Probabilities: The probabilities for all actions are calculated using
Age =1+ p)Gar — (1= p)Nay
eGAd,t

] d,t
’ E eA
e d,t

6.7. model package 69

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

pyHPDM Documentation, Release 0.9.9

actorStimulusProbs ()
Calculates in the model-appropriate way the probability of each action.

Returns probabilities — The probabilities associated with the action choices
Return type 1D ndArray of floats

calcProbabilities (actionValues)
Calculate the probabilities associated with the actions

Parameters actionValues (1D ndArray of floats)-
Returns probArray — The probabilities associated with the actionValues
Return type 1D ndArray of floats

delta (reward, expectation, action, stimuli)
Calculates the comparison between the reward and the expectation

Parameters

e reward (float)— The reward value

* expectation (float) - The expected reward value

e action (int)— The chosen action

e stimuli ({int | float | tuple | None})- The stimuli received
Returns
Return type delta

returnTaskState ()
Returns all the relevant data for this model

Returns results — The dictionary contains a series of keys including Name, Probabilities,
Actions and Events.

Return type dict

rewardExpectation (observation)
Calculate the estimated reward based on the action and stimuli

This contains parts that are task dependent
Parameters observation ({int | float | tuple})- The setof stimuli
Returns
« actionExpectations (array of floats) — The expected rewards for each action
o stimuli (/ist of floats) — The processed observations

* activeStimuli (/ist of [0, 1] mapping to [False, True]) — A list of the stimuli that were
or were not present

storeState ()
Stores the state of all the important variables so that they can be accessed later

updateModel (delta, action, stimuli, stimuliFilter)
Parameters
* delta (float) - The difference between the reward and the expected reward
* action (int)— The action chosen by the model in this trialstep
e stimuli (Iist of float)- The weights of the different stimuli in this trialstep

* stimuliFilter (1ist of bool)— A listdescribing if a stimulus cue is present
in this trialstep

70 Chapter 6. Documentation

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

pyHPDM Documentation, Release 0.9.9

6.7.2.13 model.modelTemplate module

Author Dominic Hunt

class model.modelTemplate.Model (number_actions=2, number_cues=1, num-
ber_critics=None, action_codes=None,
non_action="None’, prior=None, stimu-
lus_shaper=None, stimulus_shaper_name=None,
stimulus_shaper_properties=None, re-
ward_shaper=None, reward_shaper_name=None,
reward_shaper_properties=None, deci-
sion_function=None, decision_function_name=None,

decision_function_properties=None, **kwargs)
Bases: object

The model class is a general template for a model. It also contains universal methods used by all models.

Name
The name of the class used when recording what has been used.

Type string

currAction
The current action chosen by the model. Used to pass participant action to model when fitting

Type int

Parameters

e number_actions (integer, optional)- The maximum number of valid ac-
tions the model can expect to receive. Default 2.

* number_cues (integer, optional)-

The initial maximum number of stimuli the model can expect to receive. Default
1.

* number_critics (integer, optional) — The number of different reaction
learning sets. Default number_actions*number_cues

* action_codes (dict with string or int as keys and int
values, optional) — A dictionary used to convert between the action refer-
ences used by the task or dataset and references used in the models to describe the
order in which the action information is stored.

* prior (array of floats in [0, 1], optional) — The prior probability of of the
states being the correct one. Default ones ((self.number_actions, self.
number_cues)) / self.number_critics)

* stimulus_shaper name (string, optional) — The name of the function
that transforms the stimulus into a form the model can understand and a string to identify
it later. stimulus_shaper takes priority

* reward_shaper_name (string, optional) - The name of the function that
transforms the reward into a form the model can understand. rewards_shaper takes
priority

* decision_function_name (string, optional)-The name of the function
that takes the internal values of the model and turns them in to a decision. decision
function takes priority

* stimulus_shaper (Stimulus class, optional) — The class that trans-
forms the stimulus into a form the model can understand and a string to identify it
later. Default is Stimulus

* reward_shaper (Rewards class, optional)-The class thattransforms the
reward into a form the model can understand. Default is Rewards

6.7. model package 4

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int

pyHPDM Documentation, Release 0.9.9

e decision_function (function, optional) — The function that takes the
internal values of the model and turns them in to a decision. Default is
weightProb (list (range (number_actions)))

* stimulus_shaper_ properties (list, optional)— The valid parameters
of the function. Used to filter the unlisted keyword arguments Default is None

* reward_shaper_properties (I1ist, optional) — The valid parameters of
the function. Used to filter the unlisted keyword arguments Default is None

* decision_function_properties (list, optional)— The valid parame-
ters of the function. Used to filter the unlisted keyword arguments Default is None
actStimMerge (actStimuliParam, stimFilter=1)
Takes the parameter to be merged by stimuli and filters it by the stimuli values
Parameters
e actStimuliParam(list of floats)-—

The list of values representing each action stimuli pair, where the stimuli will have their filtered
values merged together.

e stimFilter (array of floats or a float, optional) - The list of
active stimuli with their weightings or one weight for all. Default 1

Returns actionParams — The parameter values associated with each action
Return type list of floats

action ()
Returns the action of the model

Returns action
Return type integer or None

actorStimulusProbs ()
Calculates in the model-appropriate way the probability of each action.

Returns probabilities — The probabilities associated with the action choices
Return type 1D ndArray of floats

calcProbabilities (actionValues)
Calculate the probabilities associated with the action

Parameters actionvValues (1D ndArray of floats)-
Returns probArray — The probabilities associated with the actionValues
Return type 1D ndArray of floats

choiceReflection ()
Allows the model to update its state once an action has been chosen.

chooseAction (probabilities, lastAction, events, validActions)
Chooses the next action and returns the associated probabilities

Parameters

* probabilities (1ist of floats) — The probabilities associated with each
combinations

e lastAction (int) - The last chosen action

* events (list of floats)— The stimuli. If probActions is True then this will
be unused as the probabilities will already be

* validActions (ID list or array)- The actions permitted during this trial-
step

72 Chapter 6. Documentation

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int

pyHPDM Documentation, Release 0.9.9

Returns
¢ newAction (int) — The chosen action
¢ decProbabilities (/ist of floats) — The weights for the different actions

delta (reward, expectation, action, stimuli)
Calculates the comparison between the reward and the expectation

Parameters

* reward (float)— The reward value

* expectation (float)— The expected reward value

e action (int) - The chosen action

e stimuli ({int | float | tuple | None})- The stimuli received
Returns
Return type delta

feedback (response)
Receives the reaction to the action and processes it

Parameters response (float) — The response from the task after an action. Returns
without doing anything if the value of response is None.

classmethod get_name ()

kwarg_pattern_parameters (kwargs)
Extracts the kwarg parameters that are described by the model patterns

Parameters kwargs (dict)— The class initialisation kwargs

Returns pattern_parameter_dict — A subset of kwargs that match the patterns in parame-
ter_patterns

Return type dict

lastChoiceReinforcement ()
Allows the model to update the reward expectation for the previous trialstep given the choice made in

this trialstep

observe (state)
Receives the latest observation and decides what to do with it

There are five possible states: Observation Observation Action Observation Action Feedback Action
Feedback Observation Feedback

Parameters state (tuple of ({int | float | tuple}, {tuple of int
| None}))— The stimulus from the task followed by the tuple of valid actions. Passes
the values onto a processing function, self._updateObservation*‘.

overrideActionChoice (action)
Provides a method for overriding the model action choice. This is used when fitting models to partici-

pant actions.
Parameters action (int)— Action chosen by external source to same situation
parameter_patterns = []

params ()
Returns the parameters of the model

Returns parameters
Return type dictionary

classmethod pattern_parameters_match (*args)
Validates if the parameters are described by the model patterns

6.7. model package 73

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int

pyHPDM Documentation, Release 0.9.9

Parameters *args (strings)— The potential parameter names
Returns pattern_parameters — The args that match the patterns in parameter_patterns
Return type list

processEvent (action=None, response=None)

Integrates the information from a stimulus, action, response set, regardless of which of the three ele-
ments are present.

Parameters
e stimuli ({int | float | tuple | None})- The stimuli received
e action (int, optional)- The chosen action of the model. Default None

* response (float, optional) — The response from the task after an action.
Default None

returnTaskState ()
Returns all the relevant data for this model

Returns results
Return type dictionary

rewardExpectation (stimuli)
Calculate the expected reward for each action based on the stimuli

This contains parts that are task dependent
Parameters stimuli ({int | float | tuple})— The setof stimuli
Returns
» expectedRewards (floar) — The expected reward for each action
o stimuli (list of floats) — The processed observations

* activeStimuli (/ist of [0, 1] mapping to [False, True]) — A list of the stimuli that were
or were not present

setsimID (simID)
Parameters simID (float)—

standardResultOutput ()
Returns the relevant data expected from a model as well as the parameters for the current model

Returns results — A dictionary of details about the
Return type dictionary

storeStandardResults ()
Updates the store of standard results found across models

storeState ()
Stores the state of all the important variables so that they can be accessed later

updateModel (delta, action, stimuli, stimuliFilter)
Parameters
* delta (float) - The difference between the reward and the expected reward
* action (int) - The action chosen by the model in this trialstep
e stimuli (1ist of float)- The weights of the different stimuli in this trialstep

e stimuliFilter (1ist of bool)— A listdescribing if a stimulus cue is present
in this trialstep

74 Chapter 6. Documentation

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

pyHPDM Documentation, Release 0.9.9

class model.modelTemplate.Rewards (**kwargs)
Bases: object

This acts as an interface between the feedback from a task and the feedback a model can process

Name
The identifier of the function

Type string
details ()
classmethod get_name ()

processFeedback (feedback, lastAction, stimuli)
Takes the feedback and turns it into a form to be processed by the model

Parameters
¢ feedback -
* lastAction -
e stimuli -
Returns
Return type modelFeedback

class model.modelTemplate.Stimulus (**kwargs)
Bases: object

Stimulus processor class. This acts as an interface between an observation and . Does nothing.

Name
The identifier of the function

Type string
details ()
classmethod get_name ()

processStimulus (observation)
Takes the observation and turns it into a form the model can use

Parameters observation —
Returns
* stimuliPresent (int or list of int)

« stimuliActivity (float or list of floar)

6.7.2.14 model.qlLearn module

Author Dominic Hunt

Reference Based on the paper Regulatory fit effects in a choice task Worthy, D. a, Maddox, W. T,
& Markman, A. B. (2007). Psychonomic Bulletin & Review, 14(6), 1125-32. Retrieved from
http://www.ncbi.nlm.nih.gov/pubmed/18229485

class model.gLearn.QLearn (alpha=0.3, beta=4, invBeta=None, expect=None, **kwargs)
Bases: model.modelTemplate.Model

The g-Learning algorithm

Name
The name of the class used when recording what has been used.

Type string

6.7. model package

75

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
http://www.ncbi.nlm.nih.gov/pubmed/18229485

pyHPDM Documentation, Release 0.9.9

currAction
The current action chosen by the model. Used to pass participant action to model when fitting

Type int

Parameters
* alpha (float, optional)- Learning rate parameter

* beta(float, optional)-— Sensitivity parameter for probabilities. Also known as
an exploration- exploitation parameter. Defined as (3 in the paper

+ invBeta (float, optional)- Inverse of sensitivity parameter. Defined as ——

B+1°
Default 0.2

* number_actions (integer, optional)- The maximum number of valid ac-
tions the model can expect to receive. Default 2.

* number_cues (integer, optional)-

The initial maximum number of stimuli the model can expect to receive. Default
1.

* number_critics (integer, optional) — The number of different reaction
learning sets. Default number_actions*number_cues

* action_codes (dict with string or int as keys and int
values, optional) — A dictionary used to convert between the action refer-
ences used by the task or dataset and references used in the models to describe the
order in which the action information is stored.

* prior (array of floats in [0, 1], optional) — The prior probability of of the states
being the correct one. Default ones ((number_actions, number_cues)) /
number_critics)

* expect (array of floats, optional) — The initialisation of the ex-
pected reward. Default ones ((number_actions, number_cues)) * 5 /
number_cues

e stimFunc (function, optional)— The function that transforms the stimulus
into a form the model can understand and a string to identify it later. Default is
blankStim

e rewFunc (function, optional)- The function that transforms the reward into
a form the model can understand. Default is blankRew

e decFunc (function, optional) - The function that takes the inter-
nal values of the model and turns them in to a decision. Default is
model.decision.discrete.weightProb

actorStimulusProbs ()
Calculates in the model-appropriate way the probability of each action.
Returns probabilities — The probabilities associated with the action choices
Return type 1D ndArray of floats

calcProbabilities (actionValues)
Calculate the probabilities associated with the actions

Parameters actionValues (1D ndArray of floats)-
Returns probArray — The probabilities associated with the actionValues
Return type 1D ndArray of floats

delta (reward, expectation, action, stimuli)
Calculates the comparison between the reward and the expectation

76 Chapter 6. Documentation

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

pyHPDM Documentation, Release 0.9.9

Parameters

e reward (float)— The reward value

* expectation (float) - The expected reward value

e action (int)— The chosen action

e stimuli ({int | float | tuple | None})- The stimuli received
Returns
Return type delta

returnTaskState ()
Returns all the relevant data for this model

Returns results — The dictionary contains a series of keys including Name, Probabilities,
Actions and Events.

Return type dict

rewardExpectation (observation)
Calculate the estimated reward based on the action and stimuli

This contains parts that are task dependent
Parameters observation ({int | float | tuple})- The setof stimuli
Returns
« actionExpectations (array of floats) — The expected rewards for each action
« stimuli (/ist of floats) — The processed observations

* activeStimuli (/ist of [0, 1] mapping to [False, True]) — A list of the stimuli that were
or were not present

storeState ()
Stores the state of all the important variables so that they can be accessed later

updateModel (delta, action, stimuli, stimuliFilter)
Parameters
* delta (float) - The difference between the reward and the expected reward
* action (int) - The action chosen by the model in this trialstep
e stimuli (1ist of float)-The weights of the different stimuli in this trialstep

e stimuliFilter (1ist of bool)— A listdescribing if a stimulus cue is present
in this trialstep

6.7.2.15 model.qlLearn2 module

Author Dominic Hunt

Reference Modified version of that found in the paper The role of the ventromedial prefrontal cortex
in abstract state-based inference during decision making in humans. Hampton, A. N., Bossaerts,
P., & O’Doherty, J. P. (2006). The Journal of Neuroscience : The Official Journal of the Society
for Neuroscience, 26(32), 8360-7. doi:10.1523/INEUROSCI.1010-06.2006

Notes In the original paper this model used the Luce choice algorithm, rather than the logistic al-
gorithm used here. This generalisation has meant that the variable nu is no longer possible to
use.

class model.glLearn2.QLearn2 (alpha=0.3, beta=4, alphaPos=None, alphaNeg=None, inv-

Beta=None, expect=None, **kwargs)
Bases: model.modelTemplate.Model

6.7. model package 77

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

pyHPDM Documentation, Release 0.9.9

The g-Learning algorithm modified to have different positive and negative reward prediction errors

Name
The name of the class used when recording what has been used.

Type string

currAction
The current action chosen by the model. Used to pass participant action to model when fitting

Type int

Parameters

* alpha (float, optional)— Learning rate parameter. For this model only used
when setting alphaPos and alphaNeg to the same value. Default 0.3

* alphaPos (float, optional)-The positive learning rate parameter. Used when
RPE is positive. Default is alpha

* alphaNeg (float, optional) — The negative learning rate parameter. Used
when RPE is negative. Default is alpha

* beta (float, optional)— Sensitivity parameter for probabilities

* invBeta (float, optional)- Inverse of sensitivity parameter. Defined as
Default 0. 2

_1
B+1°

* number_actions (integer, optional)- The maximum number of valid ac-
tions the model can expect to receive. Default 2.

* number_cues (integer, optional)-

The initial maximum number of stimuli the model can expect to receive. Default
1.

* number_critics (integer, optional) — The number of different reaction
learning sets. Default number_actions*number_cues

* action_codes (dict with string or int as keys and int
values, optional) — A dictionary used to convert between the action refer-
ences used by the task or dataset and references used in the models to describe the
order in which the action information is stored.

* prior (array of floats in [0, 1], optional) — The prior probability of of the states
being the correct one. Default ones ((number_actions, number_cues)) /
number_critics)

* expect (array of floats, optional) — The initialisation of the the ex-
pected reward. Default ones ((number_actions, number_cues)) * 5 /
number_cues

e stimFunc (function, optional)— The function that transforms the stimulus
into a form the model can understand and a string to identify it later. Default is
blankStim

e rewFunc (function, optional)— The function that transforms the reward into
a form the model can understand. Default is blankRew

e decFunc (function, optional) - The function that takes the inter-
nal values of the model and turns them in to a decision. Default is
model.decision.discrete.weightProb

See also:

model .QLearn This model is heavily based on that one

78 Chapter 6. Documentation

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

pyHPDM Documentation, Release 0.9.9

actorStimulusProbs ()
Calculates in the model-appropriate way the probability of each action.

Returns probabilities — The probabilities associated with the action choices
Return type 1D ndArray of floats

calcProbabilities (actionValues)
Calculate the probabilities associated with the actions

Parameters actionvValues (1D ndArray of floats)-
Returns probArray — The probabilities associated with the actionValues
Return type 1D ndArray of floats

delta (reward, expectation, action, stimuli)
Calculates the comparison between the reward and the expectation

Parameters

e reward (f1oat)— The reward value

* expectation (float)— The expected reward value

* action (int)— The chosen action

e stimuli ({int | float | tuple | None}) - The stimuli received
Returns
Return type delta

returnTaskState ()
Returns all the relevant data for this model

Returns results — The dictionary contains a series of keys including Name, Probabilities,
Actions and Events.

Return type dict

rewardExpectation (observation)
Calculate the estimated reward based on the action and stimuli

This contains parts that are task dependent
Parameters observation ({int | float | tuple})- The setof stimuli
Returns
 actionExpectations (array of floats) — The expected rewards for each action
« stimuli (/ist of floats) — The processed observations

* activeStimuli (list of [0, 1] mapping to [False, True]) — A list of the stimuli that were
or were not present

storeState ()
Stores the state of all the important variables so that they can be accessed later

updateModel (delta, action, stimuli, stimuliFilter)
Parameters
* delta (float) - The difference between the reward and the expected reward
* action (int) - The action chosen by the model in this trialstep
e stimuli (1ist of float)-The weights of the different stimuli in this trialstep

* stimuliFilter (list of bool)— A listdescribing if a stimulus cue is present
in this trialstep

. model package 79

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

pyHPDM Documentation, Release 0.9.9

6.7.2.16 model.qLearn2E module

Author Dominic Hunt

Reference Modified version of that found in the paper The role of the ventromedial prefrontal cortex
in abstract state-based inference during decision making in humans. Hampton, A. N., Bossaerts,
P., & O’Doherty, J. P. (2006). The Journal of Neuroscience : The Official Journal of the Society
for Neuroscience, 26(32), 8360-7. doi:10.1523/INEUROSCI.1010-06.2006

Notes In the original paper this model used the Luce choice algorithm, rather than the logistic al-
gorithm used here. This generalisation has meant that the variable nu is no longer possible to
use.

class model.gLearn2E.QLearn2E (alpha=0.3, epsilon=0.1, alphaPos=None, alphaNeg=None,
expect=None, **kwargs)
Bases: model.modelTemplate.Model

The g-Learning algorithm modified to have different positive and negative reward prediction errors and use
the Epsylon greedy method for claculating probabilities

Name
The name of the class used when recording what has been used.

Type string

currAction
The current action chosen by the model. Used to pass participant action to model when fitting

Type int

Parameters

* alpha (float, optional)— Learning rate parameter. For this model only used
when setting alphaPos and alphaNeg to the same value. Default 0.3

* alphaPos (float, optional)-The positive learning rate parameter. Used when
RPE is positive. Default is alpha

* alphaNeg (float, optional) — The negative learning rate parameter. Used
when RPE is negative. Default is alpha

* epsilon (float, optional) - Noise parameter. The larger it is the less likely
the model is to choose the highest expected reward

* number_actions (integer, optional)- The maximum number of valid ac-
tions the model can expect to receive. Default 2.

* number_cues (integer, optional)-

The initial maximum number of stimuli the model can expect to receive. Default
1.

* number_critics (integer, optional) — The number of different reaction
learning sets. Default number_actions*number_cues

* action_codes (dict with string or int as keys and int
values, optional) — A dictionary used to convert between the action refer-
ences used by the task or dataset and references used in the models to describe the
order in which the action information is stored.

* prior (array of floats in [0, 1], optional) — The prior probability of of the states
being the correct one. Default ones ((number_actions, number_cues)) /
number_critics)

* expect (array of floats, optional) — The initialisation of the the ex-
pected reward. Default ones ((number_actions, number_cues)) * 5 /
number_cues

80 Chapter 6. Documentation

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

pyHPDM Documentation, Release 0.9.9

e stimFunc (function, optional)— The function that transforms the stimulus
into a form the model can understand and a string to identify it later. Default is
blankStim

e rewFunc (function, optional)— The function that transforms the reward into
a form the model can understand. Default is blankRew

e decFunc (function, optional) - The function that takes the inter-
nal values of the model and turns them in to a decision. Default is
model.decision.discrete.weightProb

See also:
model .QLearn This model is heavily based on that one
actorStimulusProbs ()
Calculates in the model-appropriate way the probability of each action.
Returns probabilities — The probabilities associated with the action choices

Return type 1D ndArray of floats

calcProbabilities (actionValues)
Calculate the probabilities associated with the actions

Parameters actionValues (1D ndArray of floats)-—
Returns probArray — The probabilities associated with the actionValues
Return type 1D ndArray of floats

delta (reward, expectation, action, stimuli)
Calculates the comparison between the reward and the expectation

Parameters

* reward (float)— The reward value

* expectation (float)— The expected reward value

e action (int)— The chosen action

* stimuli ({int | float | tuple | None})— The stimuli received
Returns
Return type delta

returnTaskState ()
Returns all the relevant data for this model

Returns results — The dictionary contains a series of keys including Name, Probabilities,
Actions and Events.

Return type dict

rewardExpectation (observation)
Calculate the estimated reward based on the action and stimuli

This contains parts that are task dependent
Parameters observation ({int | float | tuple})— The setof stimuli
Returns
« actionExpectations (array of floats) — The expected rewards for each action
* stimuli (/ist of floats) — The processed observations

« activeStimuli (/ist of [0, 1] mapping to [False, True]) — A list of the stimuli that were
or were not present

. model package 81

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict

pyHPDM Documentation, Release 0.9.9

storeState ()
Stores the state of all the important variables so that they can be accessed later

updateModel (delta, action, stimuli, stimuliFilter)
Parameters
* delta (float)— The difference between the reward and the expected reward
* action (int)— The action chosen by the model in this trialstep
e stimuli (1ist of float)- The weights of the different stimuli in this trialstep

e stimuliFilter (1ist of bool)— Alistdescribing if a stimulus cue is present
in this trialstep

6.7.2.17 model.qLearnCorr module

Author Dominic Hunt

Reference Based on the QLearn model and the choice autocorrelation equation in the paper Trial-by-
trial data analysis using computational models. Daw, N. D. (2011). Decision Making, Affect,
and Learning: Attention and Performance XXIII (pp. 3-38). http://doi.org/10.1093/acprof:
080/9780199600434.003.0001

class model.glearnCorr.QLearnCorr (alpha=0.3, beta=4, kappa=0.1, invBeta=None, ex-

pect=None, **kwargs)
Bases: model.modelTemplate.Model

The g-Learning algorithm

Name
The name of the class used when recording what has been used.

Type string

currAction
The current action chosen by the model. Used to pass participant action to model when fitting

Type int

Parameters
* alpha (float, optional)- Learning rate parameter
* beta(float, optional)- Sensitivity parameter for probabilities

* kappa (float, optional)- The autocorelation parameter for which positive val-
ues promote sticking and negative values promote alternation

* invBeta (float, optional)- Inverse of sensitivity parameter. Defined as
Default 0. 2

_1
B+1°

* number_actions (integer, optional)- The maximum number of valid ac-
tions the model can expect to receive. Default 2.

* number_cues (integer, optional)-

The initial maximum number of stimuli the model can expect to receive. Default
1.

* number_ critics (integer, optional) — The number of different reaction
learning sets. Default number_actions*number_cues

* action_codes (dict with string or int as keys and int
values, optional) — A dictionary used to convert between the action refer-
ences used by the task or dataset and references used in the models to describe the
order in which the action information is stored.

82 Chapter 6. Documentation

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
http://doi.org/10.1093/acprof:oso/9780199600434.003.0001
http://doi.org/10.1093/acprof:oso/9780199600434.003.0001
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

pyHPDM Documentation, Release 0.9.9

* prior (array of floats in [0, 1], optional) — The prior probability of of the states
being the correct one. Default ones ((number_actions, number_cues)) /
number_critics)

* expect (array of floats, optional) — The initialisation of the the ex-
pected reward. Default ones ((number_actions, number_cues)) * 5 /
number_cues

e stimFunc (function, optional)— The function that transforms the stimulus
into a form the model can understand and a string to identify it later. Default is
blankStim

e rewFunc (function, optional)— The function that transforms the reward into
a form the model can understand. Default is blankRew

* decFunc (function, optional) - The function that takes the inter-
nal values of the model and turns them in to a decision. Default is
model.decision.discrete.weightProb

See also:
model .QLearn This model is heavily based on that one
actorStimulusProbs ()
Calculates in the model-appropriate way the probability of each action.
Returns probabilities — The probabilities associated with the action choices

Return type 1D ndArray of floats

calcProbabilities (actionValues)
Calculate the probabilities associated with the actions

Parameters actionvValues (1D ndArray of floats)-
Returns probArray — The probabilities associated with the actionValues
Return type 1D ndArray of floats

delta (reward, expectation, action, stimuli)
Calculates the comparison between the reward and the expectation

Parameters

e reward (float)— The reward value

* expectation (float)— The expected reward value

e action (int)— The chosen action

e stimuli ({int | float | tuple | None}) - The stimuli received
Returns
Return type delta

returnTaskState ()
Returns all the relevant data for this model

Returns results — The dictionary contains a series of keys including Name, Probabilities,
Actions and Events.

Return type dict

rewardExpectation (observation)
Calculate the estimated reward based on the action and stimuli

This contains parts that are task dependent

Parameters observation ({int | float | tuple})- The setof stimuli

6.7.

model package 83

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict

pyHPDM Documentation, Release 0.9.9

Returns
 actionExpectations (array of floats) — The expected rewards for each action
« stimuli (/ist of floats) — The processed observations

* activeStimuli (list of [0, 1] mapping to [False, True]) — A list of the stimuli that were
or were not present

storeState ()
Stores the state of all the important variables so that they can be accessed later

updateModel (delta, action, stimuli, stimuliFilter)
Parameters
* delta (float) - The difference between the reward and the expected reward
* action (int) - The action chosen by the model in this trialstep
e stimuli (1ist of float)-The weights of the different stimuli in this trialstep

* stimuliFilter (list of bool)— A listdescribing if a stimulus cue is present
in this trialstep

6.7.2.18 model.qLearnE module

Author Dominic Hunt

Reference Based on the Epsilon-greedy method along with a past choice autocorrelation inspired by
QLearnCorr

class model.glLearnE.QLearnkE (alpha=0.3, epsilon=0.1, expect=None, **kwargs)
Bases: model.modelTemplate.Model

The g-Learning algorithm

Name
The name of the class used when recording what has been used.

Type string

currAction
The current action chosen by the model. Used to pass participant action to model when fitting

Type int

Parameters
* alpha (float, optional)- Learning rate parameter

* epsilon (float, optional)— Noise parameter. The larger it is the less likely
the model is to choose the highest expected reward

* number_actions (integer, optional)- The maximum number of valid ac-
tions the model can expect to receive. Default 2.

* number_cues (integer, optional)-

The initial maximum number of stimuli the model can expect to receive. Default
1.

* number_critics (integer, optional) — The number of different reaction
learning sets. Default number_actions*number_cues

* action_codes (dict with string or int as keys and int
values, optional) — A dictionary used to convert between the action refer-
ences used by the task or dataset and references used in the models to describe the
order in which the action information is stored.

84 Chapter 6. Documentation

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

pyHPDM Documentation, Release 0.9.9

* prior (array of floats in [0, 1], optional) — The prior probability of of the states
being the correct one. Default ones ((number_actions, number_cues)) /
number_critics)

* expect (array of floats, optional) — The initialisation of the ex-
pected reward. Default ones ((number_actions, number_cues)) * 5 /
number_cues

e stimFunc (function, optional)— The function that transforms the stimulus
into a form the model can understand and a string to identify it later. Default is
blankStim

e rewFunc (function, optional)— The function that transforms the reward into
a form the model can understand. Default is blankRew

* decFunc (function, optional) - The function that takes the inter-
nal values of the model and turns them in to a decision. Default is
model.decision.discrete.weightProb

See also:
model .QLearn This model is heavily based on that one
actorStimulusProbs ()
Calculates in the model-appropriate way the probability of each action.
Returns probabilities — The probabilities associated with the action choices

Return type 1D ndArray of floats

calcProbabilities (actionValues)
Calculate the probabilities associated with the actions

Parameters actionvValues (1D ndArray of floats)-
Returns probArray — The probabilities associated with the actionValues
Return type 1D ndArray of floats

delta (reward, expectation, action, stimuli)
Calculates the comparison between the reward and the expectation

Parameters

e reward (float)— The reward value

* expectation (float)— The expected reward value

e action (int)— The chosen action

e stimuli ({int | float | tuple | None}) - The stimuli received
Returns
Return type delta

returnTaskState ()
Returns all the relevant data for this model

Returns results — The dictionary contains a series of keys including Name, Probabilities,
Actions and Events.

Return type dict

rewardExpectation (observation)
Calculate the estimated reward based on the action and stimuli

This contains parts that are task dependent

Parameters observation ({int | float | tuple})- The setof stimuli

6.7.

model package 85

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict

pyHPDM Documentation, Release 0.9.9

Returns
 actionExpectations (array of floats) — The expected rewards for each action
« stimuli (/ist of floats) — The processed observations

* activeStimuli (list of [0, 1] mapping to [False, True]) — A list of the stimuli that were
or were not present

storeState ()
Stores the state of all the important variables so that they can be accessed later

updateModel (delta, action, stimuli, stimuliFilter)
Parameters
* delta (float) - The difference between the reward and the expected reward
* action (int) - The action chosen by the model in this trialstep
e stimuli (1ist of float)-The weights of the different stimuli in this trialstep

* stimuliFilter (list of bool)— A listdescribing if a stimulus cue is present
in this trialstep

6.7.2.19 model.qLearnECorr module

Author Dominic Hunt

Reference Based on the Epsilon-greedy method along with a past choice autocorrelation inspired by
QLearnCorr

class model.glearnECorr.QLearnECorr (alpha=0.3, epsilon=0.1, kappa=0.1, expect=None,
*rkwargs)
Bases: model.modelTemplate.Model

The g-Learning algorithm

Name
The name of the class used when recording what has been used.

Type string

currAction
The current action chosen by the model. Used to pass participant action to model when fitting

Type int

Parameters
* alpha (float, optional)- Learning rate parameter

* kappa (float, optional)-The autocorrelation parameter for which positive val-
ues promote sticking and negative values promote alternation

* epsilon (float, optional)— Noise parameter. The larger it is the less likely
the model is to choose the highest expected reward

e number_actions (integer, optional)- The maximum number of valid ac-
tions the model can expect to receive. Default 2.

* number_cues (integer, optional)-

The initial maximum number of stimuli the model can expect to receive. Default
1.

* number_critics (integer, optional) — The number of different reaction
learning sets. Default number_actions*number_cues

86 Chapter 6. Documentation

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

pyHPDM Documentation, Release 0.9.9

* action_codes (dict with string or int as keys and int
values, optional) — A dictionary used to convert between the action refer-
ences used by the task or dataset and references used in the models to describe the
order in which the action information is stored.

* prior (array of floats in [0, 1], optional) — The prior probability of of the states
being the correct one. Default ones ((number_actions, number_cues)) /
number_critics)

* expect (array of floats, optional) — The initialisation of the the ex-
pected reward. Default ones ((number_actions, number_cues)) * 5 /
number_cues

e stimFunc (function, optional)— The function that transforms the stimulus
into a form the model can understand and a string to identify it later. Default is
blankStim

e rewFunc (function, optional)- The function that transforms the reward into
a form the model can understand. Default is blankRew

e decFunc (function, optional) - The function that takes the inter-
nal values of the model and turns them in to a decision. Default is
model.decision.discrete.weightProb

See also:
model .QLearnCorr This model is heavily based on that one
actorStimulusProbs ()
Calculates in the model-appropriate way the probability of each action.
Returns probabilities — The probabilities associated with the action choices

Return type 1D ndArray of floats

calcProbabilities (actionValues)
Calculate the probabilities associated with the actions

Parameters actionvValues (1D ndArray of floats)-
Returns probArray — The probabilities associated with the actionValues
Return type 1D ndArray of floats

delta (reward, expectation, action, stimuli)
Calculates the comparison between the reward and the expectation

Parameters

e reward (float)— The reward value

* expectation (float)— The expected reward value

e action (int)— The chosen action

e stimuli ({int | float | tuple | None})- The stimuli received
Returns
Return type delta

returnTaskState ()
Returns all the relevant data for this model

Returns results — The dictionary contains a series of keys including Name, Probabilities,
Actions and Events.

Return type dict

6.7. model package 87

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict

pyHPDM Documentation, Release 0.9.9

rewardExpectation (observation)
Calculate the estimated reward based on the action and stimuli

This contains parts that are task dependent
Parameters observation ({int | float | tuple})— The setof stimuli
Returns
 actionExpectations (array of floats) — The expected rewards for each action
« stimuli (/ist of floats) — The processed observations

* activeStimuli (/ist of [0, 1] mapping to [False, True]) — A list of the stimuli that were
or were not present

storeState ()
Stores the state of all the important variables so that they can be accessed later

updateModel (delta, action, stimuli, stimuliFilter)
Parameters
* delta (float) - The difference between the reward and the expected reward
* action (int) - The action chosen by the model in this trialstep
e stimuli (1ist of float)-The weights of the different stimuli in this trialstep

* stimuliFilter (list of bool)— A listdescribing if a stimulus cue is present
in this trialstep

6.7.2.20 model.qLearnF module

Author Dominic Hunt

Reference Based on the paper Regulatory fit effects in a choice task Worthy, D. a, Maddox, W. T,
& Markman, A. B. (2007). Psychonomic Bulletin & Review, 14(6), 1125-32. Retrieved from
http://www.ncbi.nlm.nih.gov/pubmed/18229485

class model.gLearnF.QLearnF (alpha=0.3, beta=4, gamma=0.3, invBeta=None, expect=None,
*tkwargs)
Bases: model.modelTemplate.Model

The g-Learning algorithm

Name
The name of the class used when recording what has been used.

Type string

currAction
The current action chosen by the model. Used to pass participant action to model when fitting

Type int

Parameters
* alpha (float, optional)- Learning rate parameter
* beta (float, optional)- Sensitivity parameter for probabilities
* gamma (float, optional) - future expectation discounting

+ invBeta (float, optional)- Inverse of sensitivity parameter. Defined as ——

B+1°
Default 0.2

* number_actions (integer, optional)- The maximum number of valid ac-
tions the model can expect to receive. Default 2.

* number_cues (integer, optional)-

88 Chapter 6. Documentation

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
http://www.ncbi.nlm.nih.gov/pubmed/18229485
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

pyHPDM Documentation, Release 0.9.9

The initial maximum number of stimuli the model can expect to receive. Default
1.

* number_critics (integer, optional) — The number of different reaction
learning sets. Default number_actions*number_cues

* action_codes (dict with string or int as keys and int
values, optional) — A dictionary used to convert between the action refer-
ences used by the task or dataset and references used in the models to describe the
order in which the action information is stored.

* prior (array of floats in [0, 1], optional) — The prior probability of of the states
being the correct one. Default ones ((number_actions, number_cues)) /
number_critics)

* expect (array of floats, optional) — The initialisation of the ex-
pected reward. Default ones ((number_actions, number_cues)) * 5 /
number_cues

e stimFunc (function, optional)— The function that transforms the stimulus
into a form the model can understand and a string to identify it later. Default is
blankStim

e rewFunc (function, optional)— The function that transforms the reward into
a form the model can understand. Default is blankRew

e decFunc (function, optional) - The function that takes the inter-
nal values of the model and turns them in to a decision. Default is
model.decision.discrete.weightProb

See also:
model . QLearn This model is heavily based on that one
actorStimulusProbs ()
Calculates in the model-appropriate way the probability of each action.
Returns probabilities — The probabilities associated with the action choices

Return type 1D ndArray of floats

calcProbabilities (actionValues)
Calculate the probabilities associated with the actions

Parameters actionvValues (1D ndArray of floats)-
Returns probArray — The probabilities associated with the actionValues
Return type 1D ndArray of floats

delta (reward, expectation, action, stimuli)
Calculates the comparison between the reward and the expectation

Parameters

e reward (float)— The reward value

* expectation (float)— The expected reward value

e action (int)— The chosen action

* stimuli ({int | float | tuple | None})— The stimuli received
Returns
Return type delta

lastChoiceReinforcement ()
Allows the model to update its expectations once the action has been chosen.

6.7. model package 89

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

pyHPDM Documentation, Release 0.9.9

returnTaskState ()
Returns all the relevant data for this model

Returns results — The dictionary contains a series of keys including Name, Probabilities,
Actions and Events.

Return type dict

rewardExpectation (observation)
Calculate the estimated reward based on the action and stimuli

This contains parts that are task dependent
Parameters observation ({int | float | tuple})- The setof stimuli
Returns
« actionExpectations (array of floats) — The expected rewards for each action
o stimuli (/ist of floats) — The processed observations

* activeStimuli (/ist of [0, 1] mapping to [False, True]) — A list of the stimuli that were
or were not present

storeState ()
Stores the state of all the important variables so that they can be accessed later

updateModel (delta, action, stimuli, stimuliFilter)
Parameters
* delta (float) - The difference between the reward and the expected reward
* action (int)— The action chosen by the model in this trialstep
e stimuli (1ist of float)-The weights of the different stimuli in this trialstep

* stimuliFilter (1ist of bool)— A listdescribing if a stimulus cue is present
in this trialstep

6.7.2.21 model.qLearnK module

Author Dominic Hunt

Reference Based on the paper Cortical substrates for exploratory decisions in humans. Daw, N. D.,
O’Doherty, J. P, Dayan, P., Dolan, R. J., & Seymour, B. (2006). Nature, 441(7095), 876-9.
https://doi.org/10.1038/nature04766

class model.glLearnK.QLearnK (beta=4, sigma=1, sigmaG=1, drift=1, sigmaA=None, al-

phaA=None, invBeta=None, expect=None, **kwargs)
Bases: model.modelTemplate.Model

The g-Learning Kalman algorithm

Name
The name of the class used when recording what has been used.

Type string

currAction
The current action chosen by the model. Used to pass participant action to model when fitting

Type int

Parameters
* sigma (float, optional)-— Uncertainty scale measure
* sigmaG (float, optional)- Uncertainty measure growth

e drift (float, optional)- The driftrate

920 Chapter 6. Documentation

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://doi.org/10.1038/nature04766
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

pyHPDM Documentation, Release 0.9.9

* beta (float, optional)— Sensitivity parameter for probabilities. Also known as
an exploration- exploitation parameter. Defined as (3 in the paper

* invBeta (float, optional)- Inverse of sensitivity parameter. Defined as -1~

B+1"
Default 0.2

e number_actions (integer, optional)- The maximum number of valid ac-
tions the model can expect to receive. Default 2.

* number_cues (integer, optional)-

The initial maximum number of stimuli the model can expect to receive. Default
1.

* number_critics (integer, optional) — The number of different reaction
learning sets. Default number_actions*number_cues

* action_codes (dict with string or int as keys and int
values, optional) — A dictionary used to convert between the action refer-
ences used by the task or dataset and references used in the models to describe the
order in which the action information is stored.

* prior (array of floats in [0, 1], optional) — The prior probability of of the states
being the correct one. Default ones ((number_actions, number_cues)) /
number_critics)

* expect (array of floats, optional) — The initialisation of the ex-
pected reward. Default ones ((number_actions, number_cues)) % 5 /
number_cues

* sigmaA (array of floats, optional)- The initialisation of the uncertainty
measure

* alphaA (array of floats, optional) — The initialisation of the learning
rates

e stimFunc (function, optional)— The function that transforms the stimulus
into a form the model can understand and a string to identify it later. Default is
blankStim

e rewFunc (function, optional)— The function that transforms the reward into
a form the model can understand. Default is blankRew

e decFunc (function, optional) - The function that takes the inter-
nal values of the model and turns them in to a decision. Default is
model.decision.discrete.weightProb

actorStimulusProbs ()
Calculates in the model-appropriate way the probability of each action.
Returns probabilities — The probabilities associated with the action choices
Return type 1D ndArray of floats

calcProbabilities (actionValues)
Calculate the probabilities associated with the actions

Parameters actionValues (1D ndArray of floats)-—
Returns probArray — The probabilities associated with the actionValues
Return type 1D ndArray of floats

delta (reward, expectation, action, stimuli)
Calculates the comparison between the reward and the expectation

Parameters

* reward (float)— The reward value

6.7. model package 91

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

pyHPDM Documentation, Release 0.9.9

* expectation (float)— The expected reward value

e action (int)— The chosen action

* stimuli ({int | float | tuple | None})— The stimuli received
Returns
Return type delta

returnTaskState ()
Returns all the relevant data for this model

Returns results — The dictionary contains a series of keys including Name, Probabilities,
Actions and Events.

Return type dict

rewardExpectation (observation)
Calculate the estimated reward based on the action and stimuli

This contains parts that are task dependent
Parameters observation ({int | float | tuple})— The setof stimuli
Returns
* actionExpectations (array of floats) — The expected rewards for each action
o stimuli (/ist of floats) — The processed observations

« activeStimuli (/ist of [0, 1] mapping to [False, True]) — A list of the stimuli that were
or were not present

storeState ()
Stores the state of all the important variables so that they can be accessed later

updateModel (delta, action, stimuli, stimuliFilter)
Parameters
* delta (float) - The difference between the reward and the expected reward
* action (int)— The action chosen by the model in this trialstep
* stimuli (1ist of float)- The weights of the different stimuli in this trialstep

e stimuliFilter (1ist of bool)— Alistdescribing if a stimulus cue is present
in this trialstep

6.7.2.22 model.qLearnMeta module

Author Dominic Hunt

Reference Based on the model QLearn as well as the paper: Meta-learning in Reinforcement Learn-
ing

class model.glearnMeta.QLearnMeta (alpha=0.3, tau=0.2, rewardD=None, rewardDD=None,

expect=None, **kwargs)
Bases: model.modelTemplate.Model

The g-Learning algorithm with a second-order adaptive beta

Name
The name of the class used when recording what has been used.

Type string

currAction
The current action chosen by the model. Used to pass participant action to model when fitting

Type int

92 Chapter 6. Documentation

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

pyHPDM Documentation, Release 0.9.9

Parameters
* alpha (float, optional)-— Learning rate parameter
* tau(float, optional)- Betarate Sensitivity parameter for probabilities

+ invBeta (float, optional)- Inverse of sensitivity parameter. Defined as ——

B+1°
Default 0.2

* number_actions (integer, optional)- The maximum number of valid ac-
tions the model can expect to receive. Default 2.

* number_cues (integer, optional)-

The initial maximum number of stimuli the model can expect to receive. Default
1.

* number_critics (integer, optional) — The number of different reaction
learning sets. Default number_actions*number_cues

* action_codes (dict with string or int as keys and int
values, optional) — A dictionary used to convert between the action refer-
ences used by the task or dataset and references used in the models to describe the
order in which the action information is stored.

* prior (array of floats in [0, 1], optional) — The prior probability of of the states
being the correct one. Default ones ((number_actions, number_cues)) /
number_critics)

* expect (array of floats, optional) — The initialisation of the the ex-
pected reward. Default ones ((number_actions, number_cues)) * 5 /
number_cues

e stimFunc (function, optional)— The function that transforms the stimulus
into a form the model can understand and a string to identify it later. Default is
blankStim

e rewFunc (function, optional)— The function that transforms the reward into
a form the model can understand. Default is blankRew

* decFunc (function, optional)- The function that takes the internal values of
the model and turns them in to a decision. Default is model.decision.binary.eta
actorStimulusProbs ()
Calculates in the model-appropriate way the probability of each action.
Returns probabilities — The probabilities associated with the action choices
Return type 1D ndArray of floats

calcProbabilities (actionValues)
Calculate the probabilities associated with the actions

Parameters actionvValues (1D ndArray of floats)-
Returns probArray — The probabilities associated with the actionValues
Return type 1D ndArray of floats

delta (reward, expectation, action, stimuli)
Calculates the comparison between the reward and the expectation

Parameters
e reward (float)— The reward value
* expectation (float)— The expected reward value
e action (int)— The chosen action

e stimuli ({int | float | tuple | None})- The stimuli received

6.7. model package 93

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

pyHPDM Documentation, Release 0.9.9

Returns
Return type delta

returnTaskState ()
Returns all the relevant data for this model

Returns results — The dictionary contains a series of keys including Name, Probabilities,
Actions and Events.

Return type dict

rewardExpectation (observation)
Calculate the estimated reward based on the action and stimuli

This contains parts that are task dependent
Parameters observation ({int | float | tuple})- The setof stimuli
Returns
* actionExpectations (array of floats) — The expected rewards for each action
o stimuli (list of floats) — The processed observations

* activeStimuli (/ist of [0, 1] mapping to [False, True]) — A list of the stimuli that were
or were not present

storeState ()
Stores the state of all the important variables so that they can be accessed later

updateBeta (reward, action)
Parameters reward (f1oat)— The reward value
updateModel (delta, action, stimuli, stimuliFilter)
Parameters
e delta (f1oat) - The difference between the reward and the expected reward
* action (int)— The action chosen by the model in this trialstep
e stimuli (1ist of float)-The weights of the different stimuli in this trialstep

* stimuliFilter (1ist of bool)— Alistdescribing if a stimulus cue is present
in this trialstep

6.7.2.23 model.randomBias module

Author Dominic Hunt

class model.randomBias.RandomBias (expect=None, **kwargs)
Bases: model.modelTemplate.Model

A model replicating a participant who chooses randomly, but with a bias towards certain actions

Name
The name of the class used when recording what has been used.

Type string

currAction
The current action chosen by the model. Used to pass participant action to model when fitting

Type int

Parameters

94 Chapter 6. Documentation

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

pyHPDM Documentation, Release 0.9.9

* probx (float, optional) — The probabilities for each action. Can be un-
normalised. The parameter names are prob followed by a number e.g. probl,
prob2. It is expected that there will be same number as number_actions.

* number_actions (integer, optional)- The maximum number of valid ac-
tions the model can expect to receive. Default 2.

* action_codes (dict with string or int as keys and int
values, optional) — A dictionary used to convert between the action refer-
ences used by the task or dataset and references used in the models to describe the
order in which the action information is stored.

e stimFunc (function, optional)— The function that transforms the stimulus
into a form the model can understand and a string to identify it later. Default is
blankStim

* rewFunc (function, optional)— The function that transforms the reward into
a form the model can understand. Default is blankRew

e decFunc (function, optional) - The function that takes the inter-
nal values of the model and turns them in to a decision. Default is
model.decision.discrete.weightProb

actorStimulusProbs ()
Calculates in the model-appropriate way the probability of each action.
Returns probabilities — The probabilities associated with the action choices
Return type 1D ndArray of floats

calcProbabilities ()
Calculate the probabilities associated with the actions

Parameters actionvValues (1D ndArray of floats)-
Returns probArray — The probabilities associated with the actionValues
Return type 1D ndArray of floats

delta (reward, expectation, action, stimuli)
Calculates the comparison between the reward and the expectation

Parameters
e reward (float)— The reward value
* expectation (float)— The expected reward value
e action (int)— The chosen action
e stimuli ({int | float | tuple | None})- The stimuli received
Returns
Return type delta
parameter_patterns = ['“prob\\d+$']

returnTaskState ()
Returns all the relevant data for this model

Returns results — The dictionary contains a series of keys including Name, Probabilities,
Actions and Events.

Return type dict

rewardExpectation (observation)
Calculate the estimated reward based on the action and stimuli

This contains parts that are task dependent

6.7.

model package 95

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict

pyHPDM Documentation, Release 0.9.9

Parameters observation ({int | float | tuple})- The setof stimuli
Returns
« actionExpectations (array of floats) — The expected rewards for each action
o stimuli (/ist of floats) — The processed observations

* activeStimuli (/ist of [0, 1] mapping to [False, True]) — A list of the stimuli that were
or were not present

storeState ()
Stores the state of all the important variables so that they can be accessed later

updateModel (delta, action, stimuli, stimuliFilter)
Parameters
* delta (float)— The difference between the reward and the expected reward
e action (int)— The action chosen by the model in this trialstep
e stimuli (I1ist of float)-— The weights of the different stimuli in this trialstep

* stimuliFilter (1ist of bool)— A listdescribing if a stimulus cue is present
in this trialstep

6.7.2.24 model.td0 module

Author Dominic Hunt
Reference Based on the description on p134-135 of Reinforcement Learning, Sutton & Barto 1998

class model.td0.TDO (alpha=0.3, beta=4, gamma=0.3, invBeta=None, expect=None, **kwargs)
Bases: model.modelTemplate.Model

The td-Learning algorithm

Name
The name of the class used when recording what has been used.

Type string

currAction
The current action chosen by the model. Used to pass participant action to model when fitting

Type int

Parameters
* alpha (float, optional)- Learning rate parameter
* beta (float, optional)-— Sensitivity parameter for probabilities

* gamma (float, optional)— future expectation discounting

* invBeta (float, optional) - Inverse of sensitivity parameter. Defined as AR

Default 0.2

e number_ actions (integer, optional)- The maximum number of valid ac-
tions the model can expect to receive. Default 2.

* number_cues (integer, optional)-

The initial maximum number of stimuli the model can expect to receive. Default
1.

e number_critics (integer, optional) — The number of different reaction
learning sets. Default number_actions*number_cues

96 Chapter 6. Documentation

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

pyHPDM Documentation, Release 0.9.9

* action_codes (dict with string or int as keys and int
values, optional) — A dictionary used to convert between the action refer-
ences used by the task or dataset and references used in the models to describe the

order in which the action information is stored.

* prior (array of floats in [0, 1], optional) — The prior probability of of the states
being the correct one. Default ones ((number_actions, number_cues))

number_critics)

* expect (array of floats, optional) — The initialisation of the ex-
pected reward. Default ones ((number_actions, number_cues)) * 5 /

number_cues

e stimFunc (function, optional)— The function that transforms the stimulus
into a form the model can understand and a string to identify it later. Default is

blankStim

e rewFunc (function, optional)- The function that transforms the reward into

a form the model can understand. Default is blankRew

* decFunc (function, optional) - The function that takes the

nal values of the model and turns them in to a decision. Default

model.decision.discrete.weightProb
actorStimulusProbs ()
Calculates in the model-appropriate way the probability of each action.
Returns probabilities — The probabilities associated with the action choices
Return type 1D ndArray of floats

calcProbabilities (actionValues)
Calculate the probabilities associated with the actions

Parameters actionValues (1D ndArray of floats)-
Returns probArray — The probabilities associated with the actionValues
Return type 1D ndArray of floats

delta (reward, expectation, action, stimuli)
Calculates the comparison between the reward and the expectation

Parameters

e reward (f1oat)— The reward value

* expectation (float)— The expected reward value

* action (int)— The chosen action

e stimuli ({int | float | tuple | None}) - The stimuli received
Returns
Return type delta

lastChoiceReinforcement ()
Allows the model to update its expectations once the action has been chosen.

returnTaskState ()
Returns all the relevant data for this model

Returns results — The dictionary contains a series of keys including Name, Probabilities,

Actions and Events.

Return type dict

6.7.

model package

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict

pyHPDM Documentation, Release 0.9.9

rewardExpectation (observation)
Calculate the estimated reward based on the action and stimuli

This contains parts that are task dependent
Parameters observation ({int | float | tuple})— The setof stimuli
Returns
 actionExpectations (array of floats) — The expected rewards for each action
« stimuli (/ist of floats) — The processed observations

* activeStimuli (/ist of [0, 1] mapping to [False, True]) — A list of the stimuli that were
or were not present

storeState ()
Stores the state of all the important variables so that they can be accessed later

updateModel (delta, action, stimuli, stimuliFilter)
Parameters
* delta (float) - The difference between the reward and the expected reward
* action (int) - The action chosen by the model in this trialstep
e stimuli (1ist of float)-The weights of the different stimuli in this trialstep

* stimuliFilter (list of bool)— A listdescribing if a stimulus cue is present
in this trialstep

6.7.2.25 model.tdE module

Author Dominic Hunt
Reference Based on the description on p134-135 of Reinforcement Learning, Sutton & Barto 1998

class model.tdE.TDE (alpha=0.3, epsilon=0.1, gamma=0.3, expect=None, **kwargs)
Bases: model.modelTemplate.Model

The td-Learning algorithm

Name
The name of the class used when recording what has been used.

Type string

currAction
The current action chosen by the model. Used to pass participant action to model when fitting

Type int

Parameters
* alpha (float, optional)- Learning rate parameter
* epsilon (float, optional)— Sensitivity parameter for probabilities
* gamma (float, optional) - future expectation discounting

* number_actions (integer, optional)- The maximum number of valid ac-
tions the model can expect to receive. Default 2.

* number_cues (integer, optional)-

The initial maximum number of stimuli the model can expect to receive. Default
1.

* number_critics (integer, optional) — The number of different reaction
learning sets. Default number_actions*number_cues

98 Chapter 6. Documentation

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

pyHPDM Documentation, Release 0.9.9

* action_codes (dict with string or int as keys and int
values, optional) — A dictionary used to convert between the action refer-
ences used by the task or dataset and references used in the models to describe the
order in which the action information is stored.

* prior (array of floats in [0, 1], optional) — The prior probability of of the states
being the correct one. Default ones ((number_actions, number_cues)) /
number_critics)

* expect (array of floats, optional) — The initialisation of the ex-
pected reward. Default ones ((number_actions, number_cues)) * 5 /
number_cues

e stimFunc (function, optional)— The function that transforms the stimulus
into a form the model can understand and a string to identify it later. Default is
blankStim

e rewFunc (function, optional)- The function that transforms the reward into
a form the model can understand. Default is blankRew

e decFunc (function, optional) - The function that takes the inter-
nal values of the model and turns them in to a decision. Default is
model.decision.discrete.weightProb

See also:
model . TDO This model is heavily based on that one
actorStimulusProbs ()
Calculates in the model-appropriate way the probability of each action.
Returns probabilities — The probabilities associated with the action choices

Return type 1D ndArray of floats

calcProbabilities (actionValues)
Calculate the probabilities associated with the actions

Parameters actionvValues (1D ndArray of floats)-
Returns probArray — The probabilities associated with the actionValues
Return type 1D ndArray of floats

delta (reward, expectation, action, stimuli)
Calculates the comparison between the reward and the expectation

Parameters

e reward (float)— The reward value

* expectation (float)— The expected reward value

e action (int)— The chosen action

e stimuli ({int | float | tuple | None})— The stimuli received
Returns
Return type delta

lastChoiceReinforcement ()
Allows the model to update its expectations once the action has been chosen.

returnTaskState ()
Returns all the relevant data for this model

Returns results — The dictionary contains a series of keys including Name, Probabilities,
Actions and Events.

6.7. model package 99

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

pyHPDM Documentation, Release 0.9.9

Return type dict

rewardExpectation (observation)
Calculate the estimated reward based on the action and stimuli

This contains parts that are task dependent
Parameters observation ({int | float | tuple})- The setof stimuli
Returns
« actionExpectations (array of floats) — The expected rewards for each action
o stimuli (/ist of floats) — The processed observations

* activeStimuli (/ist of [0, 1] mapping to [False, True]) — A list of the stimuli that were
or were not present

storeState ()
Stores the state of all the important variables so that they can be accessed later

updateModel (delta, action, stimuli, stimuliFilter)
Parameters
e delta (f1oat)— The difference between the reward and the expected reward
e action (int)— The action chosen by the model in this trialstep
e stimuli (Iist of float)-— The weights of the different stimuli in this trialstep

* stimuliFilter (1ist of bool)— A listdescribing if a stimulus cue is present
in this trialstep

6.7.2.26 model.tdr module

Author Dominic Hunt

class model.tdr.TDR (alpha=0.3, beta=4, tau=0.3, invBeta=None, expect=None, avReward=None,
**kwargs)
Bases: model.modelTemplate.Model

The td-Learning algorithm

Name
The name of the class used when recording what has been used.

Type string

currAction
The current action chosen by the model. Used to pass participant action to model when fitting

Type int

Parameters
* alpha (float, optional)- Learning rate parameter

* beta (float, optional)— Sensitivity parameter for probabilities

1

* invBeta (float, optional) - Inverse of sensitivity parameter. Defined as EEs]

Default 0. 2
* tau(float, optional)- Learning rate for average reward

e number_actions (integer, optional)- The maximum number of valid ac-
tions the model can expect to receive. Default 2.

* number_cues (integer, optional)-

100 Chapter 6. Documentation

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

pyHPDM Documentation, Release 0.9.9

The initial maximum number of stimuli the model can expect to receive. Default
1.

* number_critics (integer, optional) — The number of different reaction
learning sets. Default number_actions*number_cues

* action_codes (dict with string or int as keys and int
values, optional) — A dictionary used to convert between the action refer-
ences used by the task or dataset and references used in the models to describe the
order in which the action information is stored.

* prior (array of floats in [0, 1], optional) — The prior probability of of the states
being the correct one. Default ones ((number_actions, number_cues)) /
number_critics)

* expect (array of floats, optional) — The initialisation of the ex-
pected reward. Default ones ((number_actions, number_cues)) * 5 /
number_cues

e stimFunc (function, optional)— The function that transforms the stimulus
into a form the model can understand and a string to identify it later. Default is
blankStim

e rewFunc (function, optional)— The function that transforms the reward into
a form the model can understand. Default is blankRew

e decFunc (function, optional) - The function that takes the inter-
nal values of the model and turns them in to a decision. Default is
model.decision.discrete.weightProb

actorStimulusProbs ()
Calculates in the model-appropriate way the probability of each action.
Returns probabilities — The probabilities associated with the action choices
Return type 1D ndArray of floats

calcProbabilities (actionValues)
Calculate the probabilities associated with the actions

Parameters actionvValues (1D ndArray of floats)-
Returns probArray — The probabilities associated with the actionValues
Return type 1D ndArray of floats

delta (reward, expectation, action, stimuli)
Calculates the comparison between the reward and the expectation

Parameters

e reward (float)— The reward value

* expectation (float)— The expected reward value

e action (int)— The chosen action

e stimuli ({int | float | tuple | None}) - The stimuli received
Returns
Return type delta

lastChoiceReinforcement ()
Allows the model to update its expectations once the action has been chosen.

returnTaskState ()
Returns all the relevant data for this model

. model package 101

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

pyHPDM Documentation, Release 0.9.9

Returns results — The dictionary contains a series of keys including Name, Probabilities,
Actions and Events.

Return type dict

rewardExpectation (observation)
Calculate the estimated reward based on the action and stimuli

This contains parts that are task dependent
Parameters observation ({int | float | tuple})- The setof stimuli
Returns
* actionExpectations (array of floats) — The expected rewards for each action
o stimuli (/ist of floats) — The processed observations

* activeStimuli (/ist of [0, 1] mapping to [False, True]) — A list of the stimuli that were
or were not present

storeState ()
Stores the state of all the important variables so that they can be accessed later

updateModel (delta, action, stimuli, stimuliFilter)
Parameters
e delta (float)— The difference between the reward and the expected reward
* action (int)— The action chosen by the model in this trialstep
e stimuli (1ist of float)- The weights of the different stimuli in this trialstep

e stimuliFilter (1ist of bool)— A listdescribing if a stimulus cue is present
in this trialstep

6.8 fitAlgs package

6.8.1 Submodules

6.8.1.1 fitAlgs.basinhopping module

Author Dominic Hunt

class fitAlgs.basinhopping.Basinhopping (method=None, number_start_points=4,
allow_boundary_fits=True, bound-
ary_fit_sensitivity=>5, **kwargs)
Bases: fitAlgs.fitAlg.FitAlg
The class for fitting data using scipy.optimise.basinhopping
Parameters

e fit_sim (fitAlgs.fitSims.FitSim instance, optional) — An in-
stance of one of the fitting simulation methods. Default fitAlgs.fitSims.
FitSim

 fit_measure (string, optional)-Thename of the function used to calculate

the quality of the fit. The value it returns provides the fitter with its fitting guide. Default
-loge

 fit_measure_args (dict, optional) — The parameters used to initialise
fit_measure and extra_fit_measures. Default None

102 Chapter 6. Documentation

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict

pyHPDM Documentation, Release 0.9.9

e extra_fit_measures (list of strings, optional) — List of fit mea-
sures not used to fit the model, but to provide more information. Any arguments needed
for these measures should be placed in fit_measure_args. Default None

* bounds (dictionary of tuples of length two with floats,
optional) — The boundaries for methods that use bounds. If unbounded methods
are specified then the bounds will be ignored. Default is None, which translates to
boundaries of (0, np.inf) for each parameter.

* boundary_excess_cost (str or callable returning a function,
optional) — The function is used to calculate the penalty for exceeding the bound-
aries. Default is boundFunc.scalarBound ()

* boundary_excess_cost_properties (dict, optional) — The parame-
ters for the boundary_excess_cost function. Default {}

* method (string or 1list of strings, optional)- The name of the fit-
ting method or list of names of fitting methods or name of list of fitting methods. Valid
names found in the notes. Default unconstrained

* number_start_points (int, optional)-The number of starting points gen-
erated for each parameter. Default 4

* allow_boundary_ fits (bool, optional)- Defines if fits that reach a bound-
ary should be considered the same way as those that do not. Default is True

* boundSensitivity (int, optional)-Definesthe smallest number of decimal
places difference (so the minimal difference) between a fit value and its related bound-
aries before a fit value is considered different from a boundary. The default is 5. This is
only valid if allow_boundary_fitsisFalse

Name
The name of the fitting method

Type string

unconstrained
The list of valid unconstrained fitting methods

Type list

constrained
The list of valid constrained fitting methods

Type list

Notes
unconstrained = [‘Nelder-Mead’,’ Powell’,’CG’, BFGS’] constrained = [‘L-BFGS-B’, TNC’,’SLSQP’] Cus-
tom fitting algorithms are also allowed in theory, but it has yet to be implemented.

For each fitting function a set of different starting parameters will be tried. These are the combinations of
all the values of the different parameters. For each starting parameter provided a set of number_start_points
starting points will be chosen, surrounding the starting point provided. If the starting point provided is less
than one it will be assumed that the values cannot exceed 1, otherwise, unless otherwise told, it will be
assumed that they can take any value and will be chosen to be eavenly spaced around the provided value.

See also:

fitAlgs.fitAlg.fitAlg The general fitting method class, from which this one inherits
filtAlgs.fitSims.fitSim The general fitting class

scipy.optimise.basinhopping The fitting class this wraps around

6.8. fitAlgs package 103

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

pyHPDM Documentation, Release 0.9.9

callback (x, f, accept)
Used for storing the state after each stage of fitter

Parameters
* x(coordinates of the trial minimum)-
e £f(function value of the trial minimum)-—
* accept (whether or not that minimum was accepted)-—
constrained = ['L-BFGS-B', 'TNC', 'SLSQP']

£it (simulator, model_parameter_names, model_initial_parameters)
Runs the model through the fitting algorithms and starting parameters and returns the best one.

Parameters

* simulator (function) — The function used by a fitting algorithm to generate a
fit for given model parameters. One example is fitAlgs.fitAlg.fitness

* model_parameter names (list of strings)- Thelistof initial parameter
names

* model_initial_parameters (list of floats)— The list of the intial pa-
rameters

Returns
* best_fit_parameters (/ist of floats) — The best fitting parameters
« fit_quality (floar) — The quality of the fit as defined by the quality function chosen.

* testedParams (ruple of two lists and a dictionary) — The two lists are a list containing
the parameter values tested, in the order they were tested, and the fit qualities of these
parameters. The dictionary contains the coordinates of the trial minimum, the function
value of the trial minimum and whether or not that minimum was accepted. Each is
stored in a list.

See also:
fitAlgs.fitAlg.fitness|()

unconstrained = ['Nelder-Mead', 'Powell', 'CG', 'BFGS']

6.8.1.2 fitAlgs.boundFunc module

Author Dominic Hunt

fitAlgs.boundFunc.infBound (base=0)
Boundary excess of inf when over bounds

Parameters base (f1oat, optional)—The costatthe boundary. Default O

Returns cost — Calculates the cost of exceeding the bounday using the parameters and the
boundaries, and returns the cost.

Return type function

Examples

>>> cst = infBound(base = 160)

>>> cst ([0.5, 21, [(0, 1), (0, 5)1)
160

>>> cst([0.5, 71, [(O, 1), (O, 5)1)
inf

104 Chapter 6. Documentation

https://docs.python.org/3/library/functions.html#float

pyHPDM Documentation, Release 0.9.9

fitAlgs.boundFunc.scalarBound (base=0)
Boundary excess calculated as a scalar increase based on difference with bounds

Parameters base (float, optional)- The cost atthe boundary. Default O

Returns cost — Calculates the cost of exceeding the boundary using the parameters and the
boundaries, and returns the cost.

Return

type function

Examples

>>> cst = scalarBound (base=160)

>>> cst([0.5, 21, [(O, 1), (O, 5)1)
160.0

>>> cst ([0.5, 7], [(O, 1), (0, 5)1)
162.0

6.8.1.3 fitAlgs.evolutionary module

Author Dominic Hunt

class fitAlgs.evolutionary.Evolutionary (strategy=None, polish=False, popula-

tion_size=20, tolerance=0.01, **kwargs)

Bases: fitAlgs.fitAlg.FitAlg

The class for fitting data using scipy.optimise.differential_evolution

Parameters

fit_sim (fitAlgs.fitSims.FitSim instance, optional) — An in-
stance of one of the fitting simulation methods. Default fitAlgs.fitSims.
FitSim

fit_measure (string, optional)-The name of the function used to calculate
the quality of the fit. The value it returns provides the fitter with its fitting guide. Default
-loge

fit_measure_args (dict, optional) — The parameters used to initialise
fit_measure and extra_fit_measures. Default None

extra_ fit measures (list of strings, optional) — List of fit mea-
sures not used to fit the model, but to provide more information. Any arguments needed
for these measures should be placed in fit_measure_args. Default None

bounds (dictionary of tuples of length two with floats,
optional) — The boundaries for methods that use bounds. If unbounded methods
are specified then the bounds will be ignored. Default is None, which translates to
boundaries of (0, np.inf) for each parameter.

boundary_excess_cost (str or callable returning a function,
optional) — The function is used to calculate the penalty for exceeding the bound-
aries. Default is boundFunc.scalarBound ()

boundary_excess_cost_properties (dict, optional) — The parame-
ters for the boundary_excess_cost function. Default {}

strategy (string or list of strings, optional)-— The name of the
fitting strategy or list of names of fitting strategies or name of a list of fitting strategies.
Valid names found in the notes. Default best 1bin

polish (bool, optional) - If True (default), then scipy.optimize.minimize with
the L-BFGS—-B method is used to polish the best population member at the end, which
can improve the minimization slightly. Default False

6.8. fitAlgs package

105

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool

pyHPDM Documentation, Release 0.9.9

* population_size (int, optional)-— A multiplier for setting the total popula-
tion size. The population has popsize * len(x) individuals. Default 20

* tolerance (float, optional)— When the mean of the population energies,
multiplied by tol, divided by the standard deviation of the population energies is greater
than 1 the solving process terminates: convergence = mean(pop) * tol / stdev(pop) > 1
Default 0.01

Name
The name of the fitting strategies

Type string

strategySet
The list of valid fitting strategies. Currently these are: ‘bestlbin’, ‘bestlexp’, ‘randlexp’, ‘rand-
tobestlexp’, ‘best2exp’, ‘rand2exp’, ‘randtobestlbin’, ‘best2bin’, ‘rand2bin’, ‘rand1bin’ For all strate-
gies, use ‘all’

Type list

See also:

fitAlgs.fitAlg.FitAlg The general fitting strategy class, from which this one inherits
fitAlgs.fitSims.FitSim The general class for seeing how a parameter combination perform
scipy.optimise.differential_evolution The fitting method this wraps around
callback (xk, convergence)
Used for storing the state after each stage of fitting
Parameters
e xk (coordinates of best fit)-—

* convergence (the proportion of the points from the
iteration that have converged)-—

£it (simulator, model_parameter_names, model_initial_parameters)
Runs the model through the fitting algorithms and starting parameters and returns the best one.

Parameters

* simulator (function) — The function used by a fitting algorithm to generate a
fit for given model parameters. One example is fitAlgs.fitSim.fitness

* model_parameter names (list of strings)- Thelistofinitial parameter
names

* model_initial_ parameters(list of floats)-Thelistof the initial pa-
rameters

Returns
* best_fit_parameters (/ist of floats) — The best fitting parameters
* fit_quality (floar) — The quality of the fit as defined by the quality function chosen.

* testedParams (ruple of two lists and a dictionary) — The two lists are a list containing
the parameter values tested, in the order they were tested, and the fit qualities of these
parameters. The dictionary contains the parameters and convergence values from each
iteration, stored in two lists.

See also:
fitAlgs.fitAlg.fitness()

validStrategySet = ['bestlbin', 'bestlexp', 'randlexp', 'randtobestlexp', 'best2exp

106 Chapter 6. Documentation

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list

pyHPDM Documentation, Release 0.9.9

6.8.1.4 fitAlgs.fitAlg module

Author Dominic Hunt

class fitAlgs.fitAlg.FitAlg (fit_sim=None, fit_measure="-loge’, fit_measure_args=None,

extra_fit_measures=None, bounds=None,
boundary_excess_cost=None, bound-
ary_excess_cost_properties=None, bound_ratio=1e-06, cal-
culate_covariance=False, **kwargs)

Bases: object

The abstract class for fitting data

Parameters

Name

fit_sim (fitAlgs.fitSims.FitSim instance, optional) — An in-
stance of one of the fitting simulation methods. Default fitAlgs.fitSims.
FitSim

fit_measure (string, optional)-The name of the function used to calculate
the quality of the fit. The value it returns provides the fitter with its fitting guide. Default
—-loge

fit_measure_args (dict, optional) — The parameters used to initialise
fit_measure and extra_fit_measures. Default None

extra_fit_measures (list of strings, optional) — List of fit mea-
sures not used to fit the model, but to provide more information. Any arguments needed
for these measures should be placed in fit_measure_args. Default None

bounds (dictionary of tuples of length two with floats,
optional) — The boundaries for methods that use bounds. If unbounded methods
are specified then the bounds will be ignored. Default is None, which translates to
boundaries of (0, np.inf) for each parameter.

boundary_ excess_cost (str or callable returning a function,
optional) — The function is used to calculate the penalty for exceeding the bound-
aries. Default is boundFunc.scalarBound ()

boundary_excess_cost_properties (dict, optional) — The parame-
ters for the boundary_excess_cost function. Default { }

calculate_covariance (bool, optional) — Is the covariance calculated.
Default False

The name of the fitting method

See also:

Type string

fitAlgs.fitSims.fitSim The general fitting class

covariance (model_parameter_names, paramvals, fitinfo)
The covariance at a point

Parameters

e paramvals (array or 1ist)-— The parameters at which the

e fitinfo (dict)—-The

Returns covariance — The covariance at the point paramvals

Return type float

extra_measures (*model_parameter_values)

6.8. fitAlgs package

107

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#float

pyHPDM Documentation, Release 0.9.9

Parameters *model_parameter_values (array of floats) — The parameters
proposed by the fitting algorithm

Returns fit_quality — The fit quality value calculated using the fit quality functions de-
scribed in extraMeasures

Return type dict of float

find_name ()
Returns the name of the class

£it (simulator, model_parameter_names, model_initial_parameters)
Runs the model through the fitting algorithms and starting parameters and returns the best one. This is
the abstract version that always returns (0, 0)

Parameters

* simulator (function) — The function used by a fitting algorithm to generate a
fit for given model parameters. One example is fitAlgs.fitAlg.fitness

* model_parameter names (list of strings)- Thelistof initial parameter
names

* model_initial_parameters (list of floats)-—The listof the initial pa-
rameters

Returns
¢ best_fit_parameters (/ist of floats) — The best fitting parameters
« fit_quality (floar) — The quality of the fit as defined by the quality function chosen.

* tested_parameters (fuple of two lists) — The two lists are a list containing the parame-
ter values tested, in the order they were tested, and the fit qualities of these parameters.

See also:
fitAlgs.fitAlg.fitness ()

fitness (*params)
Generates a fit quality value used by the fitting function. This is the function passed to the fitting
function.

Parameters xparams (array of floats)— The parameters proposed by the fitting
algorithm

Returns fit_quality — The fit quality value calculated using the fitQualFunc function
Return type float

See also:

fitAlgs.qualityFunc () the module of fitQualFunc functions

fitAlg.invalidParams () Checks if the parameters are valid and if not returns inf

fitAlgs.fitSims.fitSim.fitness () Runs the model simulation and returns the values
used to calculate the fit quality

info ()

The information relating to the fitting method used

Includes information on the fitting algorithm used
Returns info — The fitSims info and the fitAlgs.fitAlg info
Return type (dict,dict)

See also:

fitAlg.fitSims.fitSim.info ()

108 Chapter 6. Documentation

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

pyHPDM Documentation, Release 0.9.9

invalid_parameters (*params)
Identifies if the parameters passed are within the bounds provided

If they are not returns inf
Parameters params (1ist of floats)— Parameters to be passed to the sim
Returns validity — If the parameters are valid or not

Return type Bool

Notes

No note

Examples

>>> a = FitAlg(bounds={1:(0,5), 2:(0,2), 3:(-1,1)})
>>> a.set_bounds ([3, 1])

>>> a.invalid_parameters (0, 0)
False

>>> a.invalid_parameters (2, 0)
True

>>> a.invalid_parameters (0, -1)
True

>>> a.invalid_parameters (6, 6)
True

participant (model, model_parameters, model_properties, participant_data)
Fit participant data to a model for a given task

Parameters

* model (model.modelTemplate.Model inherited class) - The model
you wish to try and fit values to

* model_parameters (dict)— The model initial parameters

* model_properties (dict)— The model static properties

e participant_data (dict)— The participant data
Returns

e model (model.modelTemplate.Model inherited class instance) — The model with the
best fit parameters

« fit_quality (floar) — Specifies the fit quality for this participant to the model

« fitting_data (tuple of OrderedDict and list) — They are an ordered dictionary contain-
ing the parameter values tested, in the order they were tested, and the fit qualities of
these parameters.

set_bounds (model_parameter_names)
Checks if the bounds have changed

Parameters model_parameter names (list of strings)— An ordered list of
the names of the parameters to be fitted

Examples

6.8.

fitAlgs package 109

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

pyHPDM Documentation, Release 0.9.9

>>> a = FitAlg(bounds={1: (0, 5), 2: (0, 2), 3: (-1, 1)})
>>> a.boundaries
{1: (0, 5), 2: (0, 2), 3: (=1, 1)}

>>> a.set_bounds ([])
>>> a.boundaries

{1: (0, 5), 2: (0, 2), 3: (=1, 1)}
>>> a.boundary_names

[]

>>> a.set_bounds ([3,11])
>>> a.boundary_values
[(=1, 1), (0, 5)]

>>> a.set_bounds ([2,1])
>>> a.boundary_values
[(0, 2), (0, 5)]

classmethod startParams (initial_parameters, bounds=None, number_starting_points=3)
Defines a list of different starting parameters to run the minimization over

Parameters

e initial_ parameters (list of floats) — The initial starting values pro-
posed

* bounds (l1ist of tuples of length two with floats,
optional) — The boundaries for methods that use bounds. If unbounded
methods are specified then the bounds will be ignored. Default is None, which
translates to boundaries of (0,float(‘Inf’)) for each parameter.

* number_starting points (int)— The number of starting parameter values to
be calculated around each initial point

Returns startParamSet — The generated starting parameter combinations
Return type list of list of floats

See also:

FitAlg.start_parameter._ values () Used in this function

Examples

>>> FitAlg.startParams ([0.5,0.5], number_starting_points=2)
array ([[0.33333333, 0.33333333],
[0.66666667, 0.33333333],
[0.33333333, 0.66666667],
[0.66666667, 0.66666667]11])

static start_parameter_values (initial, boundary_min=-inf, boundary_max=inf, num-

ber_starting_points=3)
Provides a set of starting points

Parameters
e initial (float)— The initial starting value proposed

* boundary_min (float, optional)— The minimum value of the parameter.
Defaultis float ('-Inf"')

* boundary max (float, optional) - The maximum value of the parameter.
Defaultis float ('Inf')

* number_starting_ points (int)— The number of starting parameter values to
be calculated around the inital point

Returns startParams — The generated starting parameters

110 Chapter 6. Documentation

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

pyHPDM Documentation, Release 0.9.9

Return type list of floats

Notes

For each starting parameter provided a set of numStartPoints starting points will be chosen, surround-
ing the starting point provided. If the starting point provided is less than one but greater than zero it
will be assumed that the values cannot leave those bounds, otherwise, unless otherwise told, it will
be assumed that they can take any positive value and will be chosen to be eavenly spaced around the
provided value.

Examples

>>> FitAlg.start_parameter_values (0.5)
array ([0.25, 0.5 , 0.75])

>>> FitAlg.start_parameter_values (5)
array ([2.5, 5. , 7.51])

>>> FitAlg.start_parameter_values (-5)
array ([2.5, 5. , 7.5])

>>> FitAlg.start_parameter_values (5, boundary_min = 0, boundary_max = 7)
array ([4., 5., 6.1)

>>> FitAlg.start_parameter_values (5, boundary_min = -3, boundary_max 30)
array ([1., 5., 9.1)

>>> FitAlg.start_parameter_values (5, boundary_min = 0, boundary_max = 30)
array ([2.5, 5. , 7.5])

>>> FitAlg.start_parameter_values (5, boundary_min = 3, boundary_max = 30,
—number_starting_points = 7)

array ([3.5, 4. , 4.5, 5. , 5.5, 6. , 6.5])

fitAlgs.fitAlg.covariance (jac)

Calculates the covariance based on the estimated jacobian

Inspired by how this is calculated in scipy.optimise.curve_fit, as found at https://github.com/scipy/scipy/
blob/2526df72e5d4ca8bad6e2f4b3cbdfbe33e805865/scipy/optimize/minpack.py#L.739

6.8.1.5 fitAlgs.fitSims module

Author Dominic Hunt

exception fitAlgs.fitSims.ActionError

Bases: Exception

class fitAlgs.fitSims.FitSim (participant_choice_property="Actions’,

participant_reward_property="Rewards’,
model_fitting_variable="ActionProb’,

task_stimuli_property=None, fit_subset=None, ac-
tion_options_property=None, float_error_response_value=1e-
100)

Bases: object
A class for fitting data by passing the participant data through the model.
This has been setup for fitting action-response models

Parameters

* participant_choice_property (string, optional) — The participant
data key of their action choices. Default 'Actions'

* participant_reward property (string, optional) — The participant
data key of the participant reward data. Default ' Rewards"'

6.8.

fitAlgs package 111

https://github.com/scipy/scipy/blob/2526df72e5d4ca8bad6e2f4b3cbdfbc33e805865/scipy/optimize/minpack.py#L739
https://github.com/scipy/scipy/blob/2526df72e5d4ca8bad6e2f4b3cbdfbc33e805865/scipy/optimize/minpack.py#L739
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/functions.html#object

pyHPDM Documentation, Release 0.9.9

* model_fitting variable (string, optional)— The key to be compared
in the model data. Default 'ActionProb’

* task_stimuli_property (list of strings or None, optional) —
The keys containing the stimuli seen by the participant before taking a decision on
an action. Default None

* action_options_property (string or None or 1list of ints,
optional) — The name of the key in partData where the list of valid actions can be
found. If None then the action list is considered to stay constant. If a list then the list
will be taken as the list of actions that can be taken at each instance. Default None

* float_error_response_value (float, optional)-If afloating point er-
ror occurs when running a fit the fitter function will return a value for each element of
fpRespVal. Defaultis 1/1e100

e fit_subset (float ('Nan'), None, "rewarded", "unrewarded", "all"
or list of int, optional) — Describes which, if any, subset of trials will be used to evaluate
the performance of the model. This can either be described as a list of trial numbers or,
by passing - "all" for fitting all trials - f1oat ('Nan') or "unrewarded" for all

those trials whose feedback was float ('Nan') - "rewarded" for those who had
feedback that was not f1oat ('Nan') Default None, which means all trials will be
used.

Name
The name of the fitting type

Type string
See also:
fitAlgs.fitAlg.FitAlg The general fitting class
find name ()

Returns the name of the class

fitness (*model_parameters)
Used by a fitter to generate the list of values characterising how well the model parameters describe
the participants actions.

Parameters model_parameters (1ist of floats)— A listof the parameters used
by the model in the order previously defined

Returns model_performance — The choices made by the model that will be used to char-
acterise the quality of the fit.

Return type list of floats

See also:

fitAlgs.fitSims.FitSim.participant () Fits participant data

fitAlgs.fitAlg.fitAlg() The general fitting class

fitAlgs.fitAlg.fitAlg.fitness () The function that this one is called by
fitted_model (*model_parameters)

Simulating a model run with specific parameter values

Parameters *model_parameters (floats)— The model parameters provided in the
order defined in the model setup

Returns model_instance

Return type model.modelTemplate.Model class instance

112

Chapter 6. Documentation

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float

pyHPDM Documentation, Release 0.9.9

get_model_parameters (*model_parameters)
Compiles the model parameter arguments based on the model parameters

Parameters model_parameters (1ist of floats)— The parameter values in the
order extracted from the modelSetup parameter dictionary

Returns parameters — The kwarg model parameter arguments
Return type dict

get_model_properties (*model_parameters)
Compiles the kwarg model arguments based on the model_parameters and previously specified other
parameters

Parameters model_parameters (1ist of floats)— The parameter values in the
order extracted from the modelSetup parameter dictionary

Returns model_properties — The kwarg model arguments
Return type dict

info ()
The dictionary describing the fitters algorithm chosen

Returns fitInfo — The dictionary of fitters class information
Return type dict

static participant_sequence_generation (participant_data, choice_property, re-
ward_property, stimuli_property, ac-
tion_options_property)
Finds the stimuli in the participant data and returns formatted observations

Parameters
e participant_data (dict) — The participant data
* choice_property (string) — The participant data key of their action choices.

* reward_property (string)— The participant data key of the participant reward
data

* stimuli_property (string or None or list of strings)— A list
of the keys in partData representing participant stimuli

* action_options_property (string or None or 1list of
strings, ints or None) — The name of the key in partData where the
list of valid actions can be found. If None then the action list is considered to stay
constant. If a list then the list will be taken as the list of actions that can be taken
at every trialstep. If the list is shorter than the number of trialsteps, then it will be
considered to be a list of valid actions for each trialstep.

Returns participant_sequence — Each list element contains the observation, action and
feedback for each trial taken by the participant

Return type list of three element tuples

prepare_sim (model, model_parameters, model_properties, participant_data)
Set up the simulation of a model following the behaviour of a participant

Parameters

* model (model.modelTemplate.Model inherited class) - The model
you wish to try and fit values to

* model_parameters (dict)— The model initial parameters
* model_properties (dict) - The model static properties

* participant_data (dict) - The participant data

6.8.

fitAlgs package 113

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

pyHPDM Documentation, Release 0.9.9

Returns
Return type fitness

exception fitAlgs.fitSims.FitSubsetError
Bases: Exception

exception fitAlgs.fitSims.StimuliError
Bases: Exception

6.8.1.6 fitAlgs.leastsq module

Author Dominic Hunt

class fitAlgs.leastsq.Leastsq (method="dogbox’, jacobian_method="3-point’, **kwargs)
Bases: fitAlgs.fitAlg.FitAlg

Fits data based on the least squared optimizer scipy.optimize.least_squares
Not properly developed and will not be documented until upgrade
Parameters

e fit_sim (fitAlgs.fitSims.FitSim instance, optional) — An in-
stance of one of the fitting simulation methods. Default fitAlgs.fitSims.
FitSim

 fit_measure (string, optional)-Thename of the function used to calculate
the quality of the fit. The value it returns provides the fitter with its fitting guide. Default
—-loge

 fit_measure_args (dict, optional) — The parameters used to initialise
fit_measure and extra_fit_measures. Default None

* extra_fit_measures (list of strings, optional) — List of fit mea-
sures not used to fit the model, but to provide more information. Any arguments needed
for these measures should be placed in fit_measure_args. Default None

* bounds (dictionary of tuples of length two with floats,
optional) — The boundaries for methods that use bounds. If unbounded methods
are specified then the bounds will be ignored. Default is None, which translates to
boundaries of (0, np.inf) for each parameter.

* boundary_ excess_cost (str or callable returning a function,
optional) — The function is used to calculate the penalty for exceeding the bound-
aries. Default is boundFunc.scalarBound ()

* boundary_excess_cost_properties (dict, optional) — The parame-
ters for the boundary_excess_cost function. Default {}

method ({ ‘trf’, ‘dogbox’, ‘Im’}, optional) — Algorithm to perform
minimization. Default dogbox

Name
The name of the fitting method

Type string

See also:

fitAlgs.fitAlg.fitAlg The general fitting method class, from which this one inherits
fitAlgs.fitSims.fitSim The general fitting class

scipy.optimize.least_squares The fitting class this wraps around

114 Chapter 6. Documentation

https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

pyHPDM Documentation, Release 0.9.9

£it (simulator, model_parameter_names, model_initial_parameters)
Runs the model through the fitting algorithms and starting parameters and returns the best one.

Parameters

e simulator (function) — The function used by a fitting algorithm to generate a
fit for given model parameters. One example is fitAlg.fitness

* model_parameter names (list of strings)- Thelistof initial parameter
names

* model_initial_ parameters (list of floats)-Thelistof the initial pa-
rameters

Returns

« fitParams (/ist of floats) — The best fitting parameters
« fit_quality (floar) — The quality of the fit as defined by the quality function chosen.

* testedParams (fuple of two lists) — The two lists are a list containing the parameter
values tested, in the order they were tested, and the fit qualities of these parameters.

See also:

fitAlgs.fitAlg.fitness()

6.8.1.7 fitAlgs.minimize module

Author Dominic Hunt

class fitAlgs

.minimize.Minimize (method=None, number_start_points=4, al-

low_boundary_fits=True, boundary_fit_sensitivity=>35,
**ewargs)

Bases: fitAlgs.fitAlg.FitAlg

The class for fitting data using scipy.optimise.minimize

Parameters

fit_sim (fitAlgs.fitSims.FitSim instance, optional) — An in-
stance of one of the fitting simulation methods. Default fitAlgs.fitSims.
FitSim

fit_measure (string, optional)-The name of the function used to calculate
the quality of the fit. The value it returns provides the fitter with its fitting guide. Default
—-loge

fit_measure_args (dict, optional) — The parameters used to initialise
fit_measure and extra_fit_measures. Default None

extra_ fit measures (list of strings, optional) — List of fit mea-
sures not used to fit the model, but to provide more information. Any arguments needed
for these measures should be placed in fit_measure_args. Default None

bounds (dictionary of tuples of length two with floats,
optional) — The boundaries for methods that use bounds. If unbounded methods
are specified then the bounds will be ignored. Default is None, which translates to
boundaries of (0, np.inf) for each parameter.

boundary_excess_cost (str or callable returning a function,
optional) — The function is used to calculate the penalty for exceeding the bound-
aries. Default is boundFunc.scalarBound ()

boundary_excess_cost_properties (dict, optional) — The parame-
ters for the boundary_excess_cost function. Default {}

6.8. fitAlgs package

115

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

pyHPDM Documentation, Release 0.9.9

e method (string or list of strings, optional)—- The name of the fit-
ting method or list of names of fitting methods or name of list of fitting methods. Valid
names found in the notes. Default unconstrained

* number_start_points (int, optional)-The number of starting points gen-
erated for each parameter. Default 4

* allow_boundary_fits (bool, optional)-—Defines if fits that reach a bound-
ary should be considered the same way as those that do not. Default is True

* boundary fit_sensitivity (int, optional) - Defines the smallest num-
ber of decimal places difference (so the minimal difference) between a parameter value
and its related boundaries before a parameter value is considered different from a bound-
ary. The default is 5. This is only valid if al low_boundary_fitsisFalse

Name
The name of the fitting method

Type string

unconstrained
The list of valid unconstrained fitting methods

Type list

constrained
The list of valid constrained fitting methods

Type list

Notes
unconstrained = [‘Nelder-Mead’,’Powell’,’ CG’,’BFGS’] constrained = [‘L-BFGS-B’,”TNC’,’SLSQP’] Cus-
tom fitting algorithms are also allowed in theory, but it has yet to be implemented.

For each fitting function a set of different starting parameters will be tried. These are the combinations of
all the values of the different parameters. For each starting parameter provided a set of number_start_points
starting points will be chosen, surrounding the starting point provided. If the starting point provided is less
than one it will be assumed that the values cannot exceed 1, otherwise, unless otherwise told, it will be
assumed that they can take any value and will be chosen to be eavenly spaced around the provided value.

See also:

fitAlgs.fitAlg.fitAlg The general fitting method class, from which this one inherits
fitAlgs.fitSims.fitSim The general fitSim class

scipy.optimise.minimize The fitting class this wraps around

constrained = ['L-BFGS-B', 'TNC', 'SLSQP']

£it (simulator, model_parameter_names, model_initial_parameters)
Runs the model through the fitting algorithms and starting parameters and returns the best one.

Parameters

* simulator (function) — The function used by a fitting algorithm to generate a
fit for given model parameters. One example is fitAlgs.fitAlg.fitness

* model_parameter names (list of strings)-Thelistof initial parameter
names

* model_initial_parameters(list of floats)-Thelistof the initial pa-
rameters

Returns

116

Chapter 6. Documentation

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

pyHPDM Documentation, Release 0.9.9

* best_fit_parameters (/ist of floats) — The best fitting parameters
* fit_quality (float) — The quality of the fit as defined by the quality function chosen.

* testedParams (fuple of two lists) — The two lists are a list containing the parameter
values tested, in the order they were tested, and the fit qualities of these parameters.

See also:
fitAlgs.fitAlg.fitness|()

unconstrained = ['Nelder-Mead', 'Powell', 'CG', 'BFGS']

6.8.1.8 fitAlgs.qualityFunc module

Author Dominic Hunt

fitAlgs.qualityFunc.BIC2 (**kwargs)
Generates a function that calculates the Bayesian Information Criterion (BIC)

Alog,(T') + fmoa (veca)
Parameters kwargs —
fitAlgs.qualityFunc.BIC2norm (**kwargs)
Parameters

* numParams (int, optional)-Thenumber of parameters used by the model used
for the fits process. Default 2

* qualityThreshold (float, optional)- The BIC minimum fit quality crite-
rion used for determining if a fit is valid. Default 20.0

* number_actions (int or 1list of ints the length of the
number of trials being fitted, optional) — The number of ac-
tions the participant can choose between for each trialstep of the task. May need to be
specified for each trial if the number of action choices varies between trials. Default 2

* randActProb (float or 1list of floats the length of the
number of trials being fitted. Optional) — The prior probability of
an action being randomly chosen. May need to be specified for each trial if the number
of action choices varies between trials. Default 1 /number_actions

fitAlgs.qualityFunc.BIC2normBoot (**kwargs)
An attempt at looking what would happen if the samples were resampled. It was hoped that by doing this,
the difference between different sample distributions would become more pronounced. This was not found
to be true.

Parameters

* numParams (int, optional)-The number of parameters used by the model used
for the fits process. Default 2

* qualityThreshold (float, optional)— The BIC minimum fit quality crite-
rion used for determining if a fit is valid. Default 20.0

* number_ actions (int or 1list of ints the length of the
number of trials being fitted, optional) — The number of ac-
tions the participant can choose between for each trialstep of the task. May need to be
specified for each trial if the number of action choices varies between trials. Default 2

* randActProb (float or 1list of floats the length of the
number of trials being fitted. Optional) — The prior probability of
an action being randomly chosen. May need to be specified for each trial if the number
of action choices varies between trials. Default 1 /number_actions

6.8. fitAlgs package 117

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

pyHPDM Documentation, Release 0.9.9

* numSamples (int, optional)— The number of samples that will be randomly

resampled from modvals. Default 100

* samplelen (int, optional)- The length of the random sample. Default 1

fitAlgs.qualityFunc.WBIC2 (**kwargs)
Unfinished WBIC implementation

fitAlgs.qualityFunc.bayesFactor (**kwargs)
23

Parameters kwargs —
fitAlgs.qualityFunc.bayesInv (**kwargs)

Parameters

* numParams (int, optional)-The number of parameters used by the model used

for the fitters process. Default 2

qualityThreshold (float, optional)— The BIC minimum fit quality crite-
rion used for determining if a fit is valid. Default 20.0

number_actions (int or 1list of ints the length of the
number of trials being fitted, optional) — The number of ac-
tions the participant can choose between for each trialstep of the task. May need to be
specified for each trial if the number of action choices varies between trials. Default 2

randActProb (float or list of floats the length of the
number of trials being fitted. Optional) — The prior probability of
an action being randomly chosen. May need to be specified for each trial if the number
of action choices varies between trials. Default 1 /number_actions

fitAlgs.qualityFunc.bayesRand (**kwargs)

fitAlgs.qualityFunc.logAverageProb (modVals)
Generates a fit quality value based on) —2log,(
vecz)

Returns fit — The sum of the model values returned
Return type float

fitAlgs.qualityFunc.logeprob (modVals)
Generates a fit quality value based on f,0q (vecz) = > —log,(
vec)

Returns fit — The sum of the model values returned
Return type float

fitAlgs.qualityFunc.logprob (modVals)
Generates a fit quality value based on f,oq (vecz) = > —2logs(
vecr)

Returns fit — The sum of the model values returned
Return type float

fitAlgs.qualityFunc.maxprob (modVals)
Generates a fit quality value based on) 1 — vecx

Returns fit — The sum of the model values returned
Return type float
fitAlgs.qualityFunc.qualFuncIdent (value, **kwargs)

fitAlgs.qualityFunc.xr2 (¥*kwargs)

118

Chapter 6. Documentation

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

pyHPDM Documentation, Release 0.9.9

fitAlgs.qualityFunc.simpleSum (modVals)
Generates a fit quality value based on) vecx

Returns fit — The sum of the model values returned

Return type float

6.9 outputting module

Author Dominic Hunt

class outputting.LoggerWriter (wrifter)
Bases: object

Fake file-like stream object that redirects writes to a logger instance. Taken from https://stackoverflow.com/
a/51612402

Parameters writer (1ogging function)-
flush ()
write (message)

class outputting.Saving (label=None, output_path=None, config=None, con-
fig_file=None, pickle_store=False, min_log_level="INFO’,

numpy_error_level="log’)
Bases: object

Creates the folder structure for the saved data and created the log file as 1og. txt
Parameters

e label (string, optional) - The label for the simulation. Default None will
mean no data is saved to files.

* output_path (string, optional)-— The path that will be used for the run out-
put. Default None

* config (dict, optional) — The parameters of the running simulation/fitting.
This is used to create a YAML configuration file. Default None

*» config_ file (string, optional)— The file name and path of a . yaml con-
figuration file. Default None

* pickle_store (bool, optional) — If true the data for each model, task and
participant is recorded. Default is False

* min_log_level (str, optional) - Defines the level of the log from (DEBUG,
INFO, WARNING, ERROR, CRITICAL). Default INFO See https://docs.python.org/3/
library/logging.html#levels

* numpy_error_level ({'log', 'raise'}) — Defines the response to numpy
errors. Default 10g. See numpy.seterr

Returns file_name_gen — Creates a new file with the name <handle> and the extension <exten-
sion>. It takes two string parameters: (handle, extension) and returns one £ileName
string

Return type function

See also:
folderSetup creates the folders

outputting.date ()
Calculate today’s date as a string in the form <year>-<month>-<day> and returns it

6.9. outputting module 119

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#object
https://stackoverflow.com/a/51612402
https://stackoverflow.com/a/51612402
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/logging.html#levels
https://docs.python.org/3/library/logging.html#levels

pyHPDM Documentation, Release 0.9.9

Returns date_today — The current date in the format <year>-<month>-<day>
Return type str

outputting.dictKeyGen (store, maxListLen=None, returnList=False, abridge=False)
Identifies the columns necessary to convert a dictionary into a table

Parameters
* store (dict)— The dictionary to be broken down into keys

* maxListLen (int or float with no decimal places or None,
optional) — The length of the longest expected list. Only useful if returnList is
True. Default None

e returnlList (bool, optional)— Defines if the lists will be broken into 1D lists
or values. Default False, lists will be broken into values

* abridge (bool, optional) — Defines if the final dataset will be a summary or
the whole lot. If it is a summary, lists of more than 10 elements are removed. Default
False, not abridged

Returns
* keySet (dict with values of dict, list or None) — The dictionary of keys to be extracted

» maxListLen (int or float with no decimal places or None, optional) — If returnList is
True this should be the length of the longest list. If returnList is False this should
return its original value

Examples

>>> store = {'string': 'string'}
>>> dictKeyGen (store)
({'"string': None}, 1)

>>> store = {'num': 23.6}

>>> dictKeyGen (store)

({"num': None}, 1)

>>> store = {'array': np.array([[1l, 2, 3, 4, 5, 61, [7, 8, 9, 10, 11, 12]1]1)}
>>> dictKeyGen (store, returnList=True, abridge=True)
({'array': array([[0],
[111) 1}, ©)
>>> store = {'dict': {1: "a", 2: "b"}}
>>> dictKeyGen (store, maxListLen=7, returnlList=True, abridge=True)
({'dict': {1: None, 2: None}}, 7)

outputting. fancy logger (log_file=None, log_level=10, numpy_error_level="log’)
Sets up the style of logging for all the simulations

Parameters

* log _file (string, optional) — Provides the path the log will be written to.
Default “./log.txt”

* log _level ({logging.DEBUG, logging.INFO, logging.WARNING,
logging.ERROR, logging.CRITICAL}) - Defines the level of the log. Default
logging. INFO

* numpy_error_level ({'log', 'raise'}) — Defines the response to numpy
errors. Default 10g. See numpy.seterr

Returns close_loggers — Closes the logging systems that have been set up
Return type function

See also:

120 Chapter 6. Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

pyHPDM Documentation, Release 0.9.9

logging () The Python standard logging library

numpy . seterr () The function npErrResp is passed to for defining the response to numpy errors
outputting.file_name_generator (output_folder=None)

Keeps track of filenames that have been used and generates the next unused one

Parameters output_folder (string, optional)— The folder into which the new file
will be placed. Default is the current working directory

Returns new_file_name — Creates a new file with the name <handle> and the extension <exten-
sion>. It takes two string parameters: (handle, extension) and returns one £ileName
string

Return type function

Examples

>>> file_name_gen = file_name_generator ("./")
>>> file_name_gen("a", "b")

'./a.b'

>>> file_name_gen ("a", "b")

'./Ja_l.b'

>>> file_name_gen("", "")

1 . /l

>>> file_name_gen = file_name_generator ()
>>> fileName = file_name_gen("", "")

>>> fileName == os.getcwd()

False

outputting.flatDictKeySet (store, selectKeys=None)
Generates a dictionary of keys and identifiers for the new dictionary, including only the keys in the keys list.
Any keys with lists will be split into a set of keys, one for each element in the original key.

These are named <key><location>
Parameters

* store (1ist of dicts) — The dictionaries would be expected to have many of
the same keys. Any dictionary keys containing lists in the input have been split into
multiple numbered keys

* selectKeys (list of strings, optional)— The keys whose data will be
included in the return dictionary. Default None, which results in all keys being returned

Returns keySet — The dictionary of keys to be extracted
Return type dict with values of dict, list or None

See also:

reframelListDicts (), newFlatDict ()

outputting.folder_ path_cleaning (folder)
Modifies string file names from Windows format to Unix format if necessary and makes sure there is a / at
the end.

Parameters folder (string)— The folder path
Returns folder_path — The folder path
Return type str

outputting.folder_setup (label, date_string, pickle_data=False, base_path=None)
Identifies and creates the folder the data will be stored in

6.9. outputting module 121

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str

pyHPDM Documentation, Release 0.9.9

Folder will be created as “./Outputs/<sim_label>_<date>/". If that had previously been created then it is
created as “./Outputs/<sim_label>_<date>_no_<#>/", where “<#>" is the first available integer.

A subfolder is also created with the name Pickle if pickle is true.
Parameters
e label (str) - The label for the simulation
* date_string (str)— The date identifier

* pickle_data (bool, optional)- If true the data for each model, task and par-
ticipant is recorded. Default is False

* base_path(str, optional)-The pathintowhich the new folder will be placed.
Default is current working directory

Returns folder_name — The folder path that has just been created
Return type string

See also:

newFile () Creates a new file
saving () Creates the log system
outputting.listKeyGen (data, maxListLen=None, returnList=False, abridge=False)
Identifies the columns necessary to convert a list into a table
Parameters
e data (numpy.ndarray or 1ist)— The listto be broken down

* maxListLen (int or float with no decimal places or None,
optional) — The length of the longest expected list. Only useful if returnList is
True. Default None

e returnlList (bool, optional)— Defines if the lists will be broken into 1D lists
or values. Default False, lists will be broken into values

* abridge (bool, optional) — Defines if the final dataset will be a summary or
the whole lot. If it is a summary, lists of more than 10 elements are removed. Default
False, not abridged

Returns

* returnList (None or list of tuples of ints or ints) — The list of co-ordinates for the
elements to be extracted from the data. If None the list is used as-is.

» maxListLen (int or float with no decimal places or None, optional) — If returnList is
True this should be the length of the longest list. If returnList is False this should
return its original value

Examples

>>> listKeyGen([[1, 2, 3, 4, 5, 6], [4, 5, 6, 7, 8, 911, maxListLen=None,
—returnlList=False, abridge=False)
(array((fo, o3, 1, o1, fto, 11, (1, 11, (0, 21, (1, 2], (O, 31, [1, 3], [0, 4],
— [1, 41, [0, 5], [1, 511), 1)
>>> listKeyGen([[1, 2, 3, 4, 5, 6], [4, 5, 6, 7, 8, 911, maxListLen=None,
—returnlList=False, abridge=True)
(None, None)
>>> listKeyGen([[1, 2, 3, 4, 5, 6], [4, 5, 6, 7, 8, 911, maxListLen=None,
—returnList=True, abridge=True)
(array ([[0],

[111), 6)

122 Chapter 6. Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

pyHPDM Documentation, Release 0.9.9

outputting.listSelection (data, loc)
Allows numpy array-like referencing of lists

Parameters

e data (I1st)— The data to be referenced

e loc (tuple of integers)— The location to be referenced
Returns selection — The referenced subset

Return type list

Examples

>>> listSelection([1, 2, 31, (0,))

1

>>> listSelection([[1, 2, 31, [4, 5, 611, (0,))
[1, 2, 3]

>>> listSelection([[1, 2, 31, [4, 5, 611, (0, 2))
3

outputting.newFlatDict (sftore, selectKeys=None, labelPrefix="")
Takes a list of dictionaries and returns a dictionary of 1D lists.

If a dictionary did not have that key or list element, then ‘None’ is put in its place
Parameters

* store (list of dicts) — The dictionaries would be expected to have many of
the same keys. Any dictionary keys containing lists in the input have been split into
multiple numbered keys

* selectKeys (list of strings, optional) - The keys whose data will be
included in the return dictionary. Default None, which results in all keys being returned

* labelPrefix (string) — An identifier to be added to the beginning of each key
string.

Returns newStore — The new dictionary with the keys from the keySet and the values as 1D
lists with ‘None’ if the keys, value pair was not found in the store.

Return type dict

Examples

>>> store = [{'list': [1, 2, 3, 4, 5, 6]1}]
>>> newFlatDict (store)

{'"list_[O0]"': [1], '"list_[1]': [2], '"ldist_[2]': [3], 'list_[3]': [4], 'list_[4]
—': [5], '"list_[5]': [6]}

>>> store = [{'string': 'string'}]

>>> newkFlatDict (store)

{'string': ["'string'"]}

>>> store = [{'dict': {1: {3: "a"}, 2: "b"}}]
>>> newFlatDict (store)

{'dict_1_3': ["'a'"], 'dict_2': ["'b'"]}

outputting.newListDict (store, labelPrefix=", maxListLen=0)
Takes a dictionary of numbers, strings, lists and arrays and returns a dictionary of 1D arrays.

If there is a single value, then a list is created with that value repeated
Parameters

* store (dict)— A dictionary of numbers, strings, lists, dictionaries and arrays

6.9. outputting module 123

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

pyHPDM Documentation, Release 0.9.9

* labelPrefix (string) — An identifier to be added to the beginning of each key
string. Default empty string

Returns newStore — The new dictionary with the keys from the keySet and the values as 1D
lists.

Return type dict

Examples

>>> store = {'list': [1, 2, 3, 4, 5, 6]}
>>> newlListDict (store)

{"list': [1, 2, 3, 4, 5, 61}

>>> store = {'string': 'string'}

>>> newListDict (store)

{'string': ['string']}

>>> store = {'dict': {1: {3: "a"}, 2: "b"}}
>>> newlListDict (store)

{'dict_1_3': ['a'], 'dict_2': ['b']}

outputting.pad (values, maxListLen)
Pads a list with None

Parameters
e values (1ist)— The list to be extended
* maxListLen (int)— The number of elements the list needs to have

outputting.picklelog (results, file_name_gen, label="")
Stores the data in the appropriate pickle file in a Pickle subfolder of the outputting folder

Parameters
e results (dict) - The data to be stored

* file_name_gen (function)— Creates a new file with the name <handle> and the
extension <extension>. It takes two string parameters: (handle, extension) and
returns one £ileName string

e label (string, optional)— A label for the results file

outputting.pickle_write (data, handle, file_name_gen)
Writes the data to a pickle file

Parameters
e data (object) — Data to be written to the file
* handle (string)— The name of the file

e file_name_gen (function)— Creates a new file with the name <handle> and the
extension <extension>. It takes two string parameters: (handle, extension) and
returns one £ileName string

6.10 utils module

Author Dominic Hunt

exception utils.ClassNameError
Bases: Exception

exception utils.FunctionNameError
Bases: Exception

124 Chapter 6. Documentation

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/exceptions.html#Exception

pyHPDM Documentation, Release 0.9.9

utils.argProcess (**kwargs)

utils.callableDetails (item)
Takes a callable item and extracts the details.

Currently only extracts things stored in item.Name and item.Params
Parameters item (callable item)—
Returns details — Contains the properties of the

Return type tuple pair with string and dictionary of strings

Examples

>>> from utils import callableDetails
>>> def foo(): print ("foo")

>>> foo.Name = "boo"

>>> callableDetails (foo0)

("boo', None)

>>> foo.Params = {1: 2, 2: 3}
>>> callableDetails (foo)
(lbOOI, {VlV: ’2', Y2V: |3’})

utils.callableDetailsString (ifem)
Takes a callable item and returns a string detailing the function.

Currently only extracts things stored in item.Name and item.Params
Parameters item (callable item)-
Returns description — Contains the properties and name of the callable

Return type string

Examples

>>> from utils import callableDetailsString

>>> def foo(): print ("foo")
>>> foo.Name = "boo"

>>> callableDetailsString (foo)
'boo’!

>>> foo.Params = {1: 2, 2: 3}

>>> callableDetailsString (foo)
'boo with 1 : 2, 2 : 3!

utils.date ()
Provides a string of today’s date

Returns date — The string is of the form [year]-[month]-[day]
Return type string

utils.discountAverage (data, discount)
An accumulating mean

Parameters
* data(list or 1-D array of floats)- The setof values to be averaged
* discount (float) - The value by which each previous value is discounted
Returns results — The values from the moving average

Return type ndArray of length data

6.10. utils module 125

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float

pyHPDM Documentation, Release 0.9.9

Examples

>>> discountAverage([1l, 2, 3, 4], 1)

array ([1. , 1.5, 2. , 2.5])

>>> discountAverage([1l, 2, 3, 4], 0.25)

array ([1. , 1.8 , 2.71428571, 3.68235294])

utils.errorResp ()
Takes an error that has been caught and returns the details as a string

Returns description — Contains the description of the error
Return type string

utils.find_class (class_name, class_folder, inherited_class, excluded_files=None)
Finds and imports a class from a given folder. Does not look in subfolders

Parameters
¢ class_name (string)— The name of the class to be used
* class_folder (str)— The path where the class is likely to be found
* inherited_class (class)— The class that the searched for class inherits from

¢ excluded_ files (Iist, optional)— A list of modules to be excluded from
the search. Can be described using portions of file names.

Returns sought_class — The uninstansiated class sought
Return type inherited_class

utils.find_function (function_name, function_folder, excluded_files=None)
Finds and imports a function from a given folder. Does not look in subfolders

Parameters
e function_name (string)— The name of the function to be used
* function_folder (str)— The path where the function is likely to be found

¢ excluded_files (Iist, optional)— A list of modules to be excluded from
the search. Can be described using portions of file names.

Returns sought_class — The uninstansiated class sought
Return type inherited_class

utils.flatten (data)
Yields the elements in order from any N dimensional iterable

Parameters data (iterable)—

Yields ID ((string,list)) — A pair containing the value at each location and the co-ordinates used
to access them.

Examples

>>> a = [[1, 2, 31,104, 5, 6]]

>>> for i1, loc in flatten(a): print (i, loc)

[0, O

0, 1

, 2

, 0
1
2

’

o U1 W DN

[
[
[
[
[

= e

’

126 Chapter 6. Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list

pyHPDM Documentation, Release 0.9.9

utils.get_class_args (inspected_class, arg_ignore=["self’])
Finds the arguments that could be passed into the specified class

utils.get_class_attributes (inspected_class, ignore=[’self’])
Finds the public attributes of the specified class

utils.get_function_args (inspected_function)
Finds the arguments that could be passed into the specified function

Parameters inspected_function -
Returns

utils.kendalw (data, ranked=False)
Calculates Kendall’s W for a n*m array with n items and m ‘judges’.

Parameters

* data(list or np.ndarray)- The datain the form of an n*m array with n items
and m ‘judges’

* ranked (bool, optional) - If the data has already been ranked or not. Default
False

Returns w — The Kendall’s W
Return type float

Notes
Based on Legendre, P. (2010). Coefficient of Concordance. In Encyclopedia of Research Design (pp.

164-169). 2455 Teller Road, Thousand Oaks California 91320 United States: SAGE Publications, Inc.
http://doi.org/10.4135/9781412961288.n55

Examples

>>> data = np.array([[2., O., 5., 1.1, [3., 3., 3., 4.1, [1., 5., 3., 5.1, [1.,
— 1., 4., 2.1, [2., 4., 5., 1.1, [1., O., O., 2.1])

>>> kendalw (data)
0.22857142857142856

>>> data = np.arvray([(r(r:, 1, 1, 11, (2, 2, 2, 21, [3, 3, 3, 31, 1[4, 4, 4, 41,
—[5, 5, 5, 51, [6, 6, 6, 6]11])

>>> kendalw (data)
1.0

utils.kendalwt (data, ranked=False)
Calculates Kendall’s W for a n*m array with n items and m ‘judges’. Corrects for ties.

Parameters

* data(list or np.ndarray)- The datain the form of an n*m array with n items
and m ‘judges’

* ranked (bool, optional) - If the data has already been ranked or not. Default
False

Returns w — The Kendall’s W
Return type float

6.10. utils module 127

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
http://doi.org/10.4135/9781412961288.n55
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float

pyHPDM Documentation, Release 0.9.9

Notes
Based on Legendre, P. (2010). Coefficient of Concordance. In Encyclopedia of Research Design (pp.

164-169). 2455 Teller Road, Thousand Oaks California 91320 United States: SAGE Publications, Inc.
http://doi.org/10.4135/9781412961288.n55

Examples

>>> data = np.array([[2., 0., 5., 1.1, [3., 3., 3., 4.1, [1., 5., 3., 5.1, [1.,
—~ 1., 4., 2.1, (2., 4., 5., 1.1, [1., 0., O., 2.11)

>>> kendalwt (data)

0.24615384615384617

>>> data = np.array([[1, 1, 1, 11, (2, 2, 2, 21, [3, 3, 3, 31, [4, 4, 4, 41,
;’[51 5! 5/ 51! [61 6r 6, 6]})

>>> kendalwt (data)

1.0

utils.kendalwts (data, ranked=False)

Calculates Kendall’s W for a n*m array with n items and m ‘judges’. Corrects for ties.
Parameters

* data(list or np.ndarray)- The datain the form of an n*m array with n items
and m ‘judges’

* ranked (bool, optional) - If the data has already been ranked or not. Default
False

Returns w — The Kendall’s W
Return type float

Notes

Based on Legendre, P. (2010). Coefficient of Concordance. In Encyclopedia of Research Design (pp.
164-169). 2455 Teller Road, Thousand Oaks California 91320 United States: SAGE Publications, Inc.
http://doi.org/10.4135/9781412961288.n55

Examples

>>> data = np.array([[2., O., 5., 1.1, [3., 3., 3., 4.1, [1., 5., 3., 5.1, [1.,
- 1., 4., 2.1, (2., 4., 5., 1.1, [1., 0., 0., 2.11)

>>> kendalwts (data)

0.24615384615384617

>>> data = np.array(([1, 1, 1, 11, (2, 2, 2, 2], [3, 3, 3, 31, [4, 4, 4, 41,
"[51 5! 5! 51! [61 6r 6r 6]})

>>> kendalwts (data)

1.0

utils.kldivergence (m0, ml, c0, cl)

Calculates the Kullback—Leibler divergence between two distributions using the means and covariances
Parameters
* m0 (array of N floats)- The means of distribution O
* ml (array of N floats)- The means of distribution 1

* ¢0 (NxN array of floats)— The covariance matrix for distribution 0

128

Chapter 6. Documentation

http://doi.org/10.4135/9781412961288.n55
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
http://doi.org/10.4135/9781412961288.n55

pyHPDM Documentation, Release 0.9.9

e ¢l (NxN array of floats)- The covariance matrix for distribution 1
Returns Kkl — The Kullback-Leibler divergence
Return type float

utils.listMerge (*args)
For merging lists with objects that are not solely numbers

Parameters args (1ist of lists)— Alistof 1D lists of objects
Returns combinations — An np.array with len(args) columns and a row for each combination

Return type np.array

Examples

>>> listMerge([1, 2, 3],
array([([1, 2, 3, 1, 2, 3, 1, 2, 31,
[5, 5, 5, 6, 6, 6

utils.listMergeGen (*args)
Fast merging of lists of numbers

Parameters args (1ist of lists of numbers)— Alistof 1D lists of numbers

Yields combination (numpy.array of 1 x len(args)) — Array of all combinations

Examples

>>> for i in listMergeGen (0.7): print (repr(i))

array ([0.7])

>>> for 1 in listMergeGen([0.7, 0.1]): print (repr(i))

array ([0.7])

array ([0.1])

>>> for i1 in listMergeGen([0.7, 0.1], [0.6]): print(repr(i))
array ([0.7, 0.61])

array ([0.1, 0.61)

>>> for i1 in listMergeGen([0.7, 0.1], [1): print(repr(i))

>>> for i1 in listMergeGen([0.7, 0.1], 0.6): print (repr(i))
array ([0.7, 0.61)
array ([0.1, 0.61])

utils.listMergeNP (*args)
Fast merging of lists of numbers

Parameters args (1ist of lists of numbers)— Alist of 1D lists of numbers
Returns combinations — An np.array with len(args) columns and a row for each combination

Return type np.array

Examples

>>> listMergeNP ([1, 2, 31, [5, 6, 7]1).T
array ([[1, 2, 3, 1, 2, 3, 1, 2, 3], [5 5, 5 6, 6, 6, 7, 7, 711)

utils.list_all_equal (data)
Checks if all of the elements of a list are the same.

Parameters data (1ist of 1D)- The list of elements to compare

6.10. utils module 129

https://docs.python.org/3/library/functions.html#float

pyHPDM Documentation, Release 0.9.9

Returns equivalence — True if the elements are all the same

Return type bool

Notes

Based on https://stackoverflow.com/questions/3844801

utils.mergeDatasetRepr (data, dataLabel="")
Take a list of dictionaries and turn it into a dictionary of lists of strings

Parameters
e data(list of dicts containing strings, 1lists or numbers)-—

* datalabel (string, optional)— This string will be appended to the front of
each key in the new dataset Default blank

Returns newStore — For each key a list will be formed of the string representations of each of
the former key values.

Return type dictionary of lists of strings

utils.mergeDatasets (data, extend=False)
Take a list of dictionaries and turn it into a dictionary of lists of objects

Parameters
e data(list of dicts containing strings, lists or numbers)-—

* extend (bool, optional)-Iflists should be extended rather than appended. De-
fault False

Returns newStore — For each key a list will be formed of the former key values. If a data set
did not contain a key a value of None will be entered for it.

Return type dictionary of lists of objects

utils.mergeDicts (*args)
Merges any number of dictionaries with different keys into a new dict

Precedence goes to key value pairs in latter dicts
Parameters args (1ist of dictionaries)-—
Returns mergedDict
Return type dictionary

utils.mergeTwoDicts (x,y)
Given two dicts, merge them into a new dict as a shallow copy

Assumes different keys in both dictionaries
Parameters
e x(dictionary) -
* y(dictionary) -
Returns mergedDict
Return type dictionary

utils.movingaverage (data, windowSize, edgeCorrection=False)
Average over an array

Parameters
* data(list of floats)- The datato average

* windowSize (int)— The size of the window

130 Chapter 6. Documentation

https://docs.python.org/3/library/functions.html#bool
https://stackoverflow.com/questions/3844801
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

pyHPDM Documentation, Release 0.9.9

* edgeCorrection (bool) — If True the edges are repaired so that there is no un-
usual dropoff

Returns convolution

Return type array

Examples

>>> movingaverage ([1, 1, 1, 1, 1], 3)

array ([0.66666667, 1. , 1. , 1. , 0.66666667])
>>> movingaverage([(1, 1, 1, 1, 1, 1, 1, 11, 4)

array([(0.5, 0.75, 1. , 1. , 1. , 1. , 1. , 0.75])

>>> movingaverage ([1, 1, 1, 1, 1], 3, edgeCorrection=True)
array([1., 1., 1., 1., 1.])

utils.runningAverage (data)
An accumulating mean

Parameters data(list or 1-D array of floats)-The setof valuestobe averaged
Returns results — The values from the moving average

Return type ndArray of length data

Examples

>>> runningAverage ([1,2,3,4])
array ([1. , 1.5, 2., 2.51)

utils.runningMean (oldMean, newValue, numValues)
A running mean

Parameters
* oldMean (float) - The old running average mean
* newValue (f1oat)— The new value to be added to the mean

* numValues (int)— The number of values in the new running mean once this value
is included

Returns newMean — The new running average mean

Return type float

Notes

Based on Donald Knuth’s Art of Computer Programming, Vol 2, page 232, 3rd edition and taken from

https://www.johndcook.com/blog/standard_deviation/

Examples

>>> runningMean (1, 2, 2)
1.5

>>> runningMean (1.5, 3, 3)
2.0

utils.runningSTD (0ldSTD, oldMean, newMean, newValue)

Parameters

6.10. utils module

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://www.johndcook.com/blog/standard_deviation/

pyHPDM Documentation, Release 0.9.9

* 01dSTD (float)— The old running average standard deviation

* oldMean (float)— The old running average mean

* newMean (float)— The new running average mean

¢ newValue (float)— The new value to be added to the mean
Returns newSTD — The new running average standard deviation

Return type float

Notes

Based on Donald Knuth’s Art of Computer Programming, Vol 2, page 232, 3rd edition (which is based
on B. P. Welford (2012) Note on a Method for Calculating Corrected Sums of Squares and Products,
Technometrics, 4:3, 419-420, DOI: 10.1080/00401706.1962.10490022 This version is taken from https:
/lwww.johndcook.com/blog/standard_deviation/

Examples

>>> runningSTD (0, 1, 1.5, 2)
0.5

>>> runningSTD (0.5, 1.5, 2.0, 3)
2.0

utils.unique (seq, idfun=None)
Finds the unique items in a list and returns them in order found.

Inspired by discussion on http://www.peterbe.com/plog/uniqgifiers-benchmark Notably
f10 Andrew Dalke and f8 by Dave Kirby

Parameters

* seq (an iterable object) — The sequence from which the unique list will be
compiled

e idfun (function, optional)— A hashing function for transforming the items
into the form that is to be compared. Default is the None

Returns result — The list of unique items

Return type list

Examples

>>> a=list ('ABeeE')
>>> unique (a)
['A', lBl, 'el, lEl]

>>> unique (a, lambda x: x.lower())
['Al, 'Bl, 'e']

Note: Unless order is needed it is best to use list(set(seq))

utils.varyingParams (intObjects, params)
Takes a list of models or tasks and returns a dictionary with only the parameters which vary and their values

132 Chapter 6. Documentation

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://www.johndcook.com/blog/standard_deviation/
https://www.johndcook.com/blog/standard_deviation/
https://docs.python.org/3/library/stdtypes.html#list

CHAPTER /

Indices and tables

* genindex
¢ modindex

e search

133

pyHPDM Documentation, Release 0.9.9

134 Chapter 7. Indices and tables

Python Module Index

d

data, 19
dataFitting, 15

f

fitAlgs, 102
fitAlgs.basinhopping, 102
fitAlgs.boundFunc, 104
fitAlgs.evolutionary, 105
fitAlgs.fitAlg, 107
fitAlgs.fitSims, 111
fitAlgs.leastsqg, 114
fitAlgs.minimize, 115
fitAlgs.qualityFunc, 117

m

model,
model.
model.
model.
model.
model.
model.
model.

model

model

model

model.
model.
model.
model.

model

model.
model.
model.

39
ACBasic, 42
ACE, 44
ACES, 46

BP, 47

BPE, 50

BPV, 52
decision, 39

.decision.binary, 39
model.
model.
model.
model.
.OpAL_HE, 68
model.
model.
model.
model.
.qgLearn2,77

decision.discrete, 40
modelTemplate, 71
OpAL, 54

OpAL_H, 65

OpALE, 57
OpALS, 59
OpALSE, 62
gLearn, 75

gLearn2E, 80

gqLearnCorr, 82
gLearnE, 84
gLearnECorr, 86
.qLearnF, 88
gLearnkK, 90

gLearnMeta, 92
randomBias, 94

model.tdO0, 96
model . tdE, 98
model.tdr, 100
modelGenerator, 39

0]
outputting, 119

S

simulation, 13

t

taskGenerator, 24
tasks, 25
tasks.balltask, 25
tasks.basic, 26
tasks.beads, 27
tasks.decks, 28
tasks.pavlov, 32
tasks.probSelect, 33
tasks.probStim, 35
tasks.taskTemplate, 31
tasks.weather, 37

u
utils, 124

135

pyHPDM Documentation, Release 0.9.9

136 Python Module Index

Index

A

ACBasic (class in model. ACBasic), 42
ACE (class in model. ACE), 44
ACES (class in model. ACES), 46
action () (model.modelTemplate.Model method), 72
ActionError, 111
actorStimulusProbs ()
(model. ACBasic.ACBasic method), 43

actorStimulusProbs () (model ACE.ACE
method), 44

actorStimulusProbs () (model ACES.ACES
method), 46

actorStimulusProbs () (model. BPBP method),
48

actorStimulusProbs () (model BPE.BPE
method), 51

actorStimulusProbs () (model. BPV.BPV
method), 53

actorStimulusProbs ()
(model.modelTemplate.Model method),
72

actorStimulusProbs () (model.OpAL.OpAL
method), 55

actorStimulusProbs ()
(model. OpAL_H.OpAL_H method), 67
actorStimulusProbs ()

(model.OpAL_HE.OpAL_HE method),
70

actorStimulusProbs () (model. OpALE.OpALE
method), 58

actorStimulusProbs () (model. OpALS.OpALS
method), 61

actorStimulusProbs ()
(model.OpALSE.OpALSE method), 64

actorStimulusProbs () (model.qLearn.QLearn
method), 76

actorStimulusProbs ()
(model.qLearn2.QLearn2 method), 78

actorStimulusProbs ()
(model.qLearn2E.QLearn2E
81

actorStimulusProbs ()
(model.qLearnCorr.QLearnCorr method), 83

method),

actorStimulusProbs ()
(model.qLearnE.QLearnE method), 85

actorStimulusProbs ()
(model.qLearnECorr.QLearnECorr method),
87

actorStimulusProbs ()
(model.qLearnF.QLearnF method), 89

actorStimulusProbs ()
(model.qLearnK.QLearnK method), 91

actorStimulusProbs ()

(model.qLearnMeta.QLearnMeta method),
93

actorStimulusProbs ()
(model.randomBias.RandomBias method),
95

actorStimulusProbs () (model.td0.TDO
method), 97

actorStimulusProbs () (model.tdE. TDE
method), 99

actorStimulusProbs () (model.tdr.TDR

method), 101
actStimMerge () (model. BP.BP method), 48
actStimMerge () (model. BPE.BPE method), 50
actStimMerge () (model. BPV.BPV method), 52
(

actStimMerge () (model.modelTemplate.Model
method), 72

argProcess () (in module utils), 124

B

Balltask (class in tasks.balltask), 25

Basic (class in tasks.basic), 26

Basinhopping (class in fitAlgs.basinhopping), 102

bayesFactor () (in module fitAlgs.qualityFunc),
118

bayesInv () (in module fitAlgs.qualityFunc), 118

bayesRand () (in module fitAlgs.qualityFunc), 118

Beads (class in tasks.beads), 27

BIC2 () (in module fitAlgs.qualityFunc), 117

BIC2norm () (in module fitAlgs.qualityFunc), 117

BIC2normBoot () (in module fitAlgs.qualityFunc),
117

BP (class in model.BP), 47

BPE (class in model. BPE), 50

BPV (class in model. BPV), 52

137

pyHPDM Documentation, Release 0.9.9

C

calcActExpectations () (model. BP.BP method),

49

calcActExpectations () (model. BPE.BPE
method), 51

calcActExpectations () (model. BPV.BPV
method), 53

calcProbabilities () (model. ACBasic.ACBasic
method), 43

calcProbabilities () (model ACE.ACE
method), 45

calcProbabilities () (model ACES.ACES
method), 46

calcProbabilities () (model. BP.BP method), 49

calcProbabilities () (model. BPE.BPE
method), 51

calcProbabilities () (model. BPV.BPV method),
53

calcProbabilities ()
(model.modelTemplate.Model method),
72

calcProbabilities () (model.OpAL.OpAL
method), 56

calcProbabilities () (model. OpAL_H.OpAL_H
method), 67

calcProbabilities()
(model. OpAL_HE.OpAL_HE method),
70

calcProbabilities () (model.OpALE.OpALE
method), 58

calcProbabilities () (model.OpALS.OpALS

method), 61
calcProbabilities () (model. OpALSE.OpALSE

method), 64

calcProbabilities () (model.qLearn.QLearn
method), 76

calcProbabilities () (model.qLearn2.QLearn2
method), 79

calcProbabilities ()
(model.qLearn2E.QLearn2E
81

calcProbabilities()
(model.qLearnCorr.QLearnCorr method), 83

calcProbabilities () (model.qLearnE.QLearnE
method), 85

calcProbabilities ()
(model.qLearnECorr.QLearnECorr method),
87

calcProbabilities () (model.qLearnF.QLearnF
method), 89

calcProbabilities ()
(model.qLearnK.QLearnK method), 91

calcProbabilities()

method),

(model.qLearnMeta.QLearnMeta method),
93

calcProbabilities ()
(model.randomBias.RandomBias method),

95

calcProbabilities () (model.td0. TDO method),

97

calcProbabilities () (model.tdE. TDE method),
99

calcProbabilities () (model.tdrTDR method),
101

callableDetails () (in module utils), 125

callableDetailsString () (in module utils),
125

callback () (fitAlgs.basinhopping.Basinhopping
method), 103

callback () (fitAlgs.evolutionary. Evolutionary
method), 106

choiceReflection ()
(model.modelTemplate.Model
72

chooseAction ()
method), 72

ClassNameError, 124

constrained (fitAlgs.basinhopping.Basinhopping
attribute), 103, 104

constrained (fitAlgs.minimize.Minimize attribute),
116

covariance () (fitAlgs.fitAlg. FitAlg method), 107

covariance () (in module fitAlgs.fitAlg), 111

csv_model_simulation () (in module simula-

method),

(model.modelTemplate.Model

tion), 13
currAction (model. modelTemplate.Model at-
tribute), 71

currAction (model. OpAL.OpAL attribute), 54

currAction (model. OpAL_H.OpAL_H attribute), 65

currAction (model. OpAL_HE.OpAL_HE attribute),
68

currAction (model. OpALE.OpALE attribute), 57

currAction (model. OpALS.OpALS attribute), 60

currAction (model. OpALSE.OpALSE attribute), 62

currAction (model.qgLearn.QLearn attribute), 75

currAction (model. gLearn2.QLearn2 attribute), 78

currAction (model.qLearn2E.QLearn2E attribute),
80

currAction (model.qLearnCorr.QLearnCorr
attribute), 82

currAction (model.qLearnE.QLearnE attribute), 84

currAction (model.qLearnECorr.QLearnECorr at-
tribute), 86

currAction (model.gLearnF.QLearnF attribute), 88

currAction (model.qgLearnK.QLearnK attribute),
90

currAction (model.qLearnMeta.QLearnMeta at-
tribute), 92

currAction (model.randomBias.RandomBias at-
tribute), 94

currAction (model.td0.TDO attribute), 96

currAction (model.tdE. TDE attribute), 98

currAction (model.tdr. TDR attribute), 100

D

Data (class in data), 19

138

Index

pyHPDM Documentation, Release 0.9.9

data (module), 19

dataFitting (module), 15

date () (in module outputting), 119
date () (in module utils), 125
Decks (class in tasks.decks), 29

defaultCueProbs (tasks.weather.Weather at-
tribute), 38

delta () (model. ACBasic.ACBasic method), 43

delta () (model ACE.ACE method), 45

delta () (model ACES.ACES method), 47

delta () (model. BP.BP method), 49

delta () (model. BPE.BPE method), 51

delta () (model.BPV.BPV method), 53

delta () (model.modellemplate.Model method), 73

delta () (model.OpAL.OpAL method), 56

delta () (model. OpAL_H.OpAL_H method), 67

delta () (model.OpAL_HE.OpAL_HE method), 70

delta () (model.OpALE.OpALE method), 58

delta () (model. OpALS.OpALS method), 61

delta () (model.OpALSE.OpALSE method), 64

delta () (model.qLearn.QLearn method), 76

delta () (model.gLearn2.QLearn2 method), 79

delta () (model.gLearn2E.QLearn2E method), 81

delta () (model.qgLearnCorr.QLearnCorr method),

83

delta () (model.qLearnE.QLearnE method), 85

delta () (model.gLearnECorr.QLearnECorr
method), 87

delta () (model.gLearnF.QLearnF method), 89

delta () (model.gLearnK.QLearnK method), 91

delta () (model.qgLearnMeta.QLearnMeta method),

93

(model.randomBias.RandomBias method),

95

delta () (model.td0.TDO method), 97

delta () (model tdE. TDE method), 99

delta () (model.tdr.TDR method), 101

details () (model. modelTemplate.Rewards method),
75

details () (model. modelTemplate.Stimulus method),
75

dictKeyGen () (in module outputting), 120

DimentionError, 24

discountAverage () (in module utils), 125

E

epsilon (tasks.decks.RewardDecksDuallnfo
tribute), 30

epsilon (tasks.decks.RewardDecksDuallnfoLogistic
attribute), 30

delta ()

at-

extra_measures () (fitAlgs.fitAlg. FitAlg method),
107

F

fancy_logger () (in module outputting), 120

feedback () (model. modelTemplate.Model method),
73

feedback () (tasks.balltask.Balltask method), 25

feedback () (tasks.basic.Basic method), 26

feedback () (tasks.decks.Decks method), 29

feedback () (tasks.paviov.Paviov method), 33

feedback () (tasks.probSelect.ProbSelect method),
34

feedback () (tasks.probStim.Probstim method), 36

feedback () (tasks.taskTemplate.Task method), 31

feedback () (tasks.weather.Weather method), 38

file_name_generator () (in module outputting),
121

FileError, 24

FileFilterError, 24

FileTypeError, 24

find_class () (in module utils), 126

find_function () (in module utils), 126

find_name () (firAlgs.fitAlg.FitAlg method), 108

find_name () (fitAlgs.fitSims.FitSim method), 112

fit () (fitAlgs.basinhopping.Basinhopping method),
104

fit () (fitAlgs.evolutionary.Evolutionary method),
106

fit () (firAlgs.fitAlg.FitAlg method), 108
fit () (fitAlgs.leastsq.Leastsq method), 114
fit () (fitAlgs.minimize.Minimize method), 116
fit_record () (in module dataFitting), 15
FitAlg (class in fitAlgs.fitAlg), 107
fitAlgs (module), 102
fitAlgs.basinhopping (module), 102
fitAlgs.boundFunc (module), 104
fitAlgs.evolutionary (module), 105
fitAlgs.fitAlg (module), 107
fitAlgs.fitSims (module), 111
fitAlgs.leastsqg (module), 114
fitAlgs.minimize (module), 115
fitAlgs.qualityFunc (module), 117
fitness () (firtAlgs.fitAlg. FitAlg method), 108
fitness () (fitAlgs.fitSims.FitSim method), 112
FitSim (class in fitAlgs.fitSims), 111
FitSubsetError, 114
fitted_model () (fitAlgs.fitSims.FitSim method),
112
flatDictKeySet () (in module outputting), 121

epsilon (tasks.probStim.RewardProbStimDualCorrectidnl at ten () (in module utils), 126

attribute), 36

flush () (outputting. LoggerWriter method), 119

epsilon (tasks.weather. RewardWeatherDualCorrectionfolder_path_cleaning () (in module out-
attribute), 37 putting), 121
errorResp () (in module utils), 126 folder_setup () (in module outputting), 121
Evolutionary (class in fitAlgs.evolutionary), 105 FoldersError, 24
extend () (data.Data method), 19 from_csv () (data.Data class method), 20
from_mat () (data.Data class method), 20
Index 139

pyHPDM Documentation, Release 0.9.9

from_pkl () (data.Data class method), 21
from_x1sx () (data.Data class method), 22
FunctionNameError, 124

G

genActualities () (in module tasks.weather), 38
genCues () (in module tasks.weather), 38
generateSequence () (in module tasks.beads), 28
get_class_args () (in module utils), 126
get_class_attributes () (in module utils), 127
get_function_args () (in module utils), 127
get_model_parameters () (fitAlgs.fitSims.FitSim
method), 112
get_model_properties () (fitAlgs.fitSims.FitSim
method), 113

get_name () (model. modelTemplate.Model class
method), 73

get_name () (model. modelTemplate.Rewards class
method), 75

get_name () (model.modelTemplate.Stimulus class
method), 75

get_name () (tasks.taskTemplate.Task class method),
32

IDError, 24

infBound () (in module fitAlgs.boundFunc), 104
info () (fitAlgs.fitAlg. FitAlg method), 108

info () (fitAlgs.fitSims.FitSim method), 113

invalid_parameters () (fitAlgs.fitAlg. FitAlg
method), 108

iter_details() (modelGenerator.ModelGen
method), 39

iter_task_ID() (taskGenerator.TaskGeneration
method), 25

K

kendalw () (in module utils), 127
kendalwt () (in module utils), 127
kendalwts () (in module utils), 128
kldivergence () (in module utils), 128
kwarg_pattern_parameters ()

(model.modelTemplate.Model method),
73

L

lastChoiceReinforcement ()
(model.modelTemplate. Model method),

73
lastChoiceReinforcement ()
(model.qLearnF.QLearnF method), 89

lastChoiceReinforcement () (model.td0.TDO
method), 97

lastChoiceReinforcement () (model.tdE.TDE
method), 99

lastChoiceReinforcement () (model.tdr.TDR

method), 101
Leastsqg (class in fitAlgs.leastsq), 114

LengthError, 15,24
list_all_equal () (in module utils), 129
listKeyGen () (in module outputting), 122
listMerge () (in module utils), 129
listMergeGen () (in module utils), 129
listMergeNP () (in module utils), 129
listSelection () (in module outputting), 122
load_data () (data.Data class method), 23
log_fitting_parameters () (in
dataFitting), 15
log_model_fitted_parameters () (in module
dataFitting), 15
log_model_fitting_parameters () (in mod-
ule dataFitting), 15
log_simulation_parameters ()
simulation), 13
logAverageProb () (in
tAlgs.qualityFunc), 118
logeprob () (in module fitAlgs.qualityFunc), 118
LoggerWriter (class in outputting), 119
logprob () (in module fitAlgs.qualityFunc), 118

M

maxprob () (in module fitAlgs.qualityFunc), 118

maxProb () (in module model.decision.discrete), 40

maxReward (tasks.decks.RewardDecksNormalised at-
tribute), 31

maxRewardVal (tasks.decks.RewardDecksAlllnfo at-
tribute), 30

maxRewardVal (tasks.decks.RewardDecksDuallnfo
attribute), 30

maxRewardVal (tasks.decks.RewardDecksDuallnfoLogistic
attribute), 30

mergeDatasetRepr () (in module utils), 130

mergeDatasets () (in module utils), 130

mergeDicts () (in module utils), 130

mergeTwoDicts () (in module utils), 130

Minimize (class in fitAlgs.minimize), 115

minRewardVal (tasks.decks.RewardDecksAlllnfo at-
tribute), 30

minRewardVal (tasks.decks.RewardDecksDuallnfoLogistic
attribute), 30

Model (class in model. modelTemplate), 71

model (module), 39

model .ACBasic (module), 42

model . ACE (module), 44

model . ACES (module), 46

model . BP (module), 47

model . BPE (module), 50

model .BPV (module), 52

model .decision (module), 39

model.decision.binary (module), 39

model.decision.discrete (module), 40

model .modelTemplate (module), 71

model . OpAL (module), 54

model .OpAL_H (module), 65

model .OpAL_HE (module), 68

model . OpALE (module), 57

module

(in module

module fi-

140

Index

pyHPDM Documentation, Release 0.9.9

model . OpALS (module), 59

model . OpALSE (module), 62

model .gLearn (module), 75

model .gLearn?2 (module), 77

model .gLearn2E (module), 80

model .gLearnCorr (module), 82
model . gLearnE (module), 84

model .gLearnECorr (module), 86
model . gLearnF (module), 88

model . gLearnK (module), 90

model .gLearnMeta (module), 92
randomBias (module), 94

td0 (module), 96

model . tdE (module), 98

model . tdr (module), 100

ModelGen (class in modelGenerator), 39
modelGenerator (module), 39
movingaverage () (in module utils), 130

N

Name (fitAlgs.basinhopping.Basinhopping attribute),
103

Name (fitAlgs.evolutionary.Evolutionary attribute), 106

Name (firAlgs.fitAlg. FitAlg attribute), 107

Name (fitAlgs.fitSims. FitSim attribute), 112

Name (firAlgs.leastsq.Leastsq attribute), 114

Name (firAlgs.minimize.Minimize attribute), 116

Name (in module tasks.pavlov), 33

Name (model. ACBasic.ACBasic attribute), 42

Name (model. ACE.ACE attribute), 44

Name (model. ACES.ACES attribute), 46

Name (model. BP.BP attribute), 47

Name (model. BPE.BPE attribute), 50

Name (model. BPV.BPV attribute), 52

Name (model.modelTemplate.Model attribute), 71

Name (model.modelTemplate.Rewards attribute), 75

Name (model.modelTemplate.Stimulus attribute), 75

Name (model. OpAL.OpAL attribute), 54

Name (model. OpAL_H.OpAL_H attribute), 65

Name (model. OpAL_HE.OpAL_HE attribute), 68

Name (model. OpALE.OpALE attribute), 57

Name (model.OpALS.OpALS attribute), 59

Name (model. OpALSE.OpALSE attribute), 62

Name (model.qLearn.QLearn attribute), 75

Name (model.qLearn2.QLearn2 attribute), 78

Name (model.qLearn2E.QLearn2E attribute), 80

Name (model.qLearnCorr.QLearnCorr attribute), 82

Name (model.qLearnE.QLearnE attribute), 84

Name (model.gLearnECorr.QLearnECorr attribute),
86

Name (model.qLearnF.QLearnF attribute), 88

Name (model.qLearnK.QLearnK attribute), 90

Name (model.qgLearnMeta.QLearnMeta attribute), 92

Name (model.randomBias.RandomBias attribute), 94

Name (model.td0.TDO attribute), 96

Name (model.tdE.TDE attribute), 98

Name (model.tdr. TDR attribute), 100

Name (tasks.basic.Basic attribute), 26

model.
model.

Name (tasks.beads.Beads attribute), 27

Name (tasks.decks.Decks attribute), 29

Name (tasks.decks.RewardDecksAlllnfo attribute), 30

Name (tasks.paviov.Pavlov attribute), 32

Name (tasks.probSelect.ProbSelect attribute), 34

Name (tasks.probStim.Probstim attribute), 35

Name (tasks.taskTemplate. Task attribute), 31

Name (tasks.weather.Weather attribute), 37

new_task () (taskGenerator.TaskGeneration
method), 25

newFlatDict () (in module outputting), 123

newListDict () (in module outputting), 123

number_actions (tasks.decks.RewardDecksAlllnfo
attribute), 30

O

observe ()
73
oneProb (tasks.beads.StimulusBeadDuallnfo
tribute), 28
OpAL (class in model. OpAL), 54
OpAL_H (class in model. OpAL_H), 65
OpAL_HE (class in model. OpAL_HE), 68
OpALE (class in model.OpALE), 57
OpALS (class in model.OpALS), 59
OpALSE (class in model. OpALSE), 62
OrderError, 15
outputting (module), 119
overrideActionChoice ()
(model.modelTemplate.Model
73

(model.modelTemplate.Model method),

at-

method),

P

pad () (in module outputting), 124
parameter_patterns
(model.modelTemplate.Model
73
parameter_patterns
(model.randomBias.RandomBias attribute),
95
params () (model.modelTemplate.Model method), 73
paramns () (tasks.taskTemplate. Task method), 32
participant () (fitAlgs.fitAlg. FitAlg method), 109
participant_sequence_generation ()
(fitAlgs.fitSims. FitSim static method), 113
pattern_parameters_match ()
(model.modelTemplate.Model class method),
73
Pavlov (class in tasks.paviov), 32
pavlovStimTemporal () (in module tasks.paviov),
33
phi (tasks.decks.RewardDecksPhi attribute), 31
pickle_write () (in module outputting), 124
pickleLog () (in module outputting), 124
prepare_sim() (fitAlgs.fitSims.FitSim method), 113
ProbSelect (class in tasks.probSelect), 33
Probstim (class in tasks.probStim), 35

attribute),

Index

141

pyHPDM Documentation, Release 0.9.9

probThresh () (in module model.decision.discrete),

40
proceed () (tasks.balltask.Balltask method), 25
proceed () (tasks.basic.Basic method), 26
proceed () (tasks.decks.Decks method), 29
proceed () (tasks.paviov.Paviov method), 33
proceed () (tasks.probSelect.ProbSelect method), 34
proceed () (tasks.probStim.Probstim method), 36
proceed () (tasks.taskTemplate.Task method), 32

proceed () (tasks.weather.Weather method), 38

processEvent () (model.modelTemplate.Model
method), 74

processFeedback ()
(model.modelTemplate.Rewards method), 75

processFeedback ()
(tasks.balltask.RewardBalltaskDirect
method), 25

processFeedback ()
(tasks.basic.RewardBasicDirect
26

processFeedback ()
(tasks.beads.RewardBeadDirect method), 277

processFeedback ()
(tasks.decks.RewardDecksAlllnfo
30

processFeedback ()
(tasks.decks.RewardDecksDuallnfo method),
30

processFeedback ()
(tasks.decks.RewardDecksDuallnfoLogistic
method), 30

processFeedback ()
(tasks.decks.RewardDecksLinear
30

processFeedback ()
(tasks.decks.RewardDecksNormalised
method), 31

processFeedback ()
(tasks.decks.RewardDecksPhi
31

processFeedback ()
(tasks.probSelect.RewardProbSelectDirect
method), 35

processFeedback ()
(tasks.probStim.RewardProbStimDiff
method), 36

processFeedback ()

method),

method),

method),

method),

(tasks.probStim.RewardProbStimDualCorrection ¢ oo i veAct ion 0

method), 36

processFeedback ()
(tasks.weather.RewardsWeatherDirect
method), 37

processFeedback ()
(tasks.weather.RewardWeatherDiff method),
37

processFeedback ()
(tasks.weather.RewardWeatherDualCorrection
method), 37

ProcessingError, 24

processStimulus ()
(model.modelTemplate.Stimulus method), 75

processStimulus ()
(tasks.balltask.StimulusBalltaskSimple
method), 26

processStimulus ()
(tasks.basic.StimulusBasicSimple
26

processStimulus ()
(tasks.beads.StimulusBeadDirect
28

processStimulus ()
(tasks.beads.StimulusBeadDualDirect
method), 28

processStimulus ()
(tasks.beads.StimulusBeadDuallnfo method),
28

processStimulus ()
(tasks.decks.StimulusDecksLinear
31

processStimulus ()
(tasks.probSelect.StimulusProbSelectDirect
method), 35

processStimulus ()
(tasks.probStim.StimulusProbStimDirect
method), 36

processStimulus ()
(tasks.weather.StimulusWeatherDirect
method), 37

method),

method),

method),

Q

QLearn (class in model.qLearn), 75
QLearn? (class in model.qLearn2), 77
QLearn?2E (class in model.qLearn2E), 80
QLearnCorr (class in model.qLearnCorr), 82
QLearnk (class in model.qLearnE), 84
QLearnECorr (class in model.qgLearnECorr), 86
QLearnF (class in model.qLearnF), 88
QLearnK (class in model.qLearnK), 90
QLearnMeta (class in model.qgLearnMeta), 92
qualFuncIdent () (in module fitAlgs.qualityFunc),
118

R

r2 () (in module fitAlgs.qualityFunc), 118
RandomBias (class in model.randomBias), 94
(tasks.balltask.Balltask

method), 25
receiveAction () (tasks.basic.Basic method), 26
receiveAction () (tasks.beads.Beads method), 277
receiveAction () (tasks.decks.Decks method), 29
receiveAction () (tasks.paviov.Paviov method),
33
receiveAction () (tasks.probSelect.ProbSelect
method), 34
receiveAction () (tasks.probStim.Probstim
method), 36

142

Index

pyHPDM Documentation, Release 0.9.9

receiveAction () (tasks.taskTemplate. Task
method), 32

receiveAction () (tasks.weather.Weather
method), 38

record_fitting () (in module dataFitting), 16

record_participant_fit () (in module
dataFitting), 16

record_simulation () (in module simulation), 13

returnTaskState () (model. ACBasic.ACBasic
method), 43

returnTaskState () (model ACE.ACE method),
45

returnTaskState () (model ACES.ACES method),
47

returnTaskState () (model. BP.BP method), 49

returnTaskState () (model BPE.BPE method),
51

returnTaskState () (model BPV.BPV method),
53

returnTaskState ()
(model.modelTemplate.Model method),
74

returnTaskState () (model.OpAL.OpAL
method), 56

returnTaskState () (model OpAL_H.OpAL_H
method), 67

returnTaskState () (model OpAL_HE.OpAL_HE
method), 70

returnTaskState () (model.OpALE.OpALE
method), 59

returnTaskState () (model.OpALS.OpALS
method), 62

returnTaskState () (model. OpALSE.OpALSE
method), 64

returnTaskState () (model.qLearn.QLearn
method), 77

returnTaskState () (model.qLearn2.QLearn?2
method), 79

returnTaskState () (model.qgLearn2E.QLearn2E
method), 81

returnTaskState ()
(model.qLearnCorr.QLearnCorr method), 83

returnTaskState () (model.qLearnE.QLearnE
method), 85

returnTaskState ()
(model.qLearnECorr.QLearnECorr method),
87

returnTaskState () (model.qLearnF.QLearnF
method), 89

returnTaskState () (model.qLearnK.QLearnK
method), 92

returnTaskState ()
(model.qLearnMeta.QLearnMeta — method),
94

returnTaskState ()
(model.randomBias.RandomBias method),
95

returnTaskState () (model.td0.TDO method), 97

returnTaskState () (model.tdE. TDE method), 99
returnTaskState () (model.tdr.TDR method), 101
returnTaskState () (tasks.balltask.Balltask

method), 25

returnTaskState () (tasks.basic.Basic method),
26

returnTaskState () (tasks.beads.Beads method),
27

returnTaskState () (tasks.decks.Decks method),
29

returnTaskState () (tasks.pavlov.Pavlov
method), 33

returnTaskState () (tasks.probSelect.ProbSelect
method), 34

returnTaskState () (tasks.probStim.Probstim
method), 36

returnTaskState () (tasks.taskTemplate. Task
method), 32

returnTaskState () (tasks.weather.Weather
method), 38

RewardBalltaskDirect (class in tasks.balltask),
25

RewardBasicDirect (class in tasks.basic), 26

RewardBeadDirect (class in tasks.beads), 27

RewardDecksAllInfo (class in tasks.decks), 29

RewardDecksDualInfo (class in tasks.decks), 30

RewardDecksDualInfolLogistic (class in
tasks.decks), 30

RewardDecksLinear (class in tasks.decks), 30

RewardDecksNormalised (class in tasks.decks),
31

RewardDecksPhi (class in tasks.decks), 31

rewardExpectation () (model. ACBasic.ACBasic

method), 43

rewardExpectation () (model ACE.ACE
method), 45

rewardExpectation () (model ACES.ACES
method), 47

rewardExpectation () (model. BP.BP method), 49

rewardExpectation () (model. BPE.BPE
method), 51

rewardExpectation () (model. BPV.BPV method),
53

rewardExpectation ()
(model.modelTemplate.Model method),
74

rewardExpectation () (model.OpAL.OpAL
method), 56

rewardExpectation () (model. OpAL_H.OpAL_H
method), 67

rewardExpectation ()
(model.OpAL_HE.OpAL_HE method),
70

rewardExpectation () (model.OpALE.OpALE
method), 59

rewardExpectation () (model.OpALS.OpALS

method), 62
rewardExpectation () (model. OpALSE.OpALSE

Index

143

pyHPDM Documentation, Release 0.9.9

method), 65

rewardExpectation () (model.qLearn.QLearn
method), 77

rewardExpectation () (model.gLearn2.QLearn2
method), 79

rewardExpectation ()
(model.qLearn2E.QLearn2E
81

rewardExpectation ()
(model.qLearnCorr.QLearnCorr method), 83

rewardExpectation () (model.qLearnE.QLearnE
method), 85

rewardExpectation ()
(model.qLearnECorr.QLearnECorr method),
87

rewardExpectation () (model.gLearnF.QLearnF
method), 90

rewardExpectation ()
(model.qLearnK.QLearnK method), 92

rewardExpectation ()

method),

(model.qLearnMeta.QLearnMeta — method),
94

rewardExpectation ()
(model.randomBias.RandomBias method),
95

rewardExpectation () (model.td0. TDO method),
97

rewardExpectation () (model.tdE. TDE method),
100

rewardExpectation () (model.tdrTDR method),
102

RewardProbSelectDirect (class in

tasks.probSelect), 34
RewardProbStimDiff (class in tasks.probStim), 36
RewardProbStimDualCorrection (class in

tasks.probStim), 36
Rewards (class in model. modelTemplate), 74
RewardsWeatherDirect (class in tasks.weather),

37
RewardWeatherDiff (class in tasks.weather), 37
RewardWeatherDualCorrection (class in

tasks.weather), 37
run () (in module dataFitting), 17
run () (in module simulation), 14
runningAverage () (in module utils), 131
runningMean () (in module utils), 131
runningSTD () (in module utils), 131

S

Saving (class in outputting), 119

scalarBound () (in module fitAlgs.boundFunc), 104

set_bounds () (fitAlgs.fitAlg FitAlg method), 109

setsimID () (model. modelTemplate.Model method),
74

simpleSum () (in module fitAlgs.qualityFunc), 118

simulation (module), 13

single () (in module model.decision.binary), 39

sort_by_last_number () (in module data), 24

standardResultOutput ()
(model.modelTemplate.Model
74

standardResultOutput ()
(tasks.taskTemplate. Task method), 32

start_parameter_values ()
tAlgs.fitAlg. FitAlg static method), 110

startParams () (firtAlgs.fitAlg.FitAlg class method),
110

StimuliError, 114

Stimulus (class in model. modelTemplate), 75

StimulusBalltaskSimple (class in
tasks.balltask), 25

StimulusBasicSimple (class in tasks.basic), 26

StimulusBeadDirect (class in tasks.beads), 27

StimulusBeadDualDirect (class in tasks.beads),
28

StimulusBeadDualInfo (class in tasks.beads), 28

StimulusDecksLinear (class in tasks.decks), 31

method),

(ﬁ_

StimulusProbSelectDirect (class in
tasks.probSelect), 35
StimulusProbStimDirect (class in
tasks.probStim), 36
StimulusWeatherDirect (class in
tasks.weather), 37
storeStandardResults ()
(model.modelTemplate.Model method),
74
storeState () (model. ACBasic.ACBasic method),
43
storeState () (model ACE.ACE method), 45
storeState () (model. ACES.ACES method), 47
storeState () (model. BP.BP method), 49
storeState () (model. BPE.BPE method), 51
storeState () (model. BPV.BPV method), 53
storeState () (model.modelTemplate.Model
method), 74

storeState () (model. OpAL.OpAL method), 56
storeState () (model.OpAL_H.OpAL_H method),
68

storeState ()
method), 70

storeState () (model. OpALE.OpALE method), 59

storeState () (model.OpALS.OpALS method), 62

storeState () (model.OpALSE.OpALSE method),
65

storeState () (model.gLearn.QLearn method), 77

storeState () (model.qLearn2.QLearn2 method),

(model. OpAL_HE.OpAL_HE

79

storeState () (model.qLearn2E.QLearn2E
method), 81

storeState () (model.qgLearnCorr.QLearnCorr
method), 84

storeState () (model.qLearnE.QLearnE method),
86

storeState () (model.qLearnECorr.QLearnECorr
method), 88

storeState () (model.qLearnF.QLearnF method),

144

Index

pyHPDM Documentation, Release 0.9.9

90
storeState () (model.qLearnK.QLearnK method),
92
storeState ()
method), 94
storeState ()
method), 96
storeState () (model.td0.TDO method), 98

(model.qLearnMeta.QLearnMeta

(model.randomBias.RandomBias

storeState () (model tdE.TDE method), 100
storeState () (model.tdrTDR method), 102
storeState () (tasks.balltask. Balltask method), 25
storeState () (tasks.basic.Basic method), 26
storeState () (tasks.beads.Beads method), 27
storeState () (tasks.decks.Decks method), 29
storeState () (tasks.paviov.Pavlov method), 33
storeState () (tasks.probSelect.ProbSelect
method), 34
storeState () (tasks.probStim.Probstim method),
36
storeState () (tasks.taskTemplate.Task method),
32

storeState () (tasks.weather.Weather method), 38
strategySet (fitAlgs.evolutionary.Evolutionary at-
tribute), 106

T

Task (class in tasks.taskTemplate), 31
TaskGeneration (class in taskGenerator), 24
taskGenerator (module), 24
tasks (module), 25
tasks.balltask (module), 25
tasks.basic (module), 26
tasks.beads (module), 27
tasks.decks (module), 28
tasks.pavlov (module), 32
tasks.probSelect (module), 33
tasks.probStim (module), 35
tasks.taskTemplate (module), 31
tasks.weather (module), 37

TDO (class in model.td0), 96

TDE (class in model.tdE), 98

TDR (class in model.tdr), 100

U

unconstrained (fi-
tAlgs.basinhopping.Basinhopping attribute),
103, 104

unconstrained (fitAlgs.minimize.Minimize at-

tribute), 116, 117
unique () (in module utils), 132

updateBeta () (model.qLearnMeta.QLearnMeta
method), 94

updateExpectations () (model. BP.BP method),
49

updateExpectations () (model. BPE.BPE
method), 51

updateExpectations () (model. BPV.BPV
method), 54

updateModel () (model. ACBasic.ACBasic method),

43
updateModel () (model ACE.ACE method), 45
updateModel () (model. ACES.ACES method), 47
updateModel () (model. BP.BP method), 49
updateModel () (model. BPE.BPE method), 51
updateModel () (model. BPV.BPV method), 54
updateModel () (model.modelTemplate.Model

method), 74

updateModel () (model.OpAL.OpAL method), 56

updateModel () (model.OpAL_H.OpAL_H
method), 68

updateModel () (model. OpAL_HE.OpAL_HE
method), 70

updateModel () (model. OpALE.OpALE method),
59

updateModel () (model.OpALS.OpALS method), 62
updateModel () (model.OpALSE.OpALSE method),

65

updateModel () (model.qLearn.QLearn method),
77

updateModel () (model.gLearn2.QLearn2 method),
79

updateModel () (model.qgLearn2E.QLearn2E
method), 82

updateModel () (model.qLearnCorr.QLearnCorr
method), 84

updateModel () (model.qLearnE.QLearnE
method), 86

updateModel () (model.qLearnECorr.QLearnECorr
method), 88

updateModel () (model.qgLearnF.QLearnF method),
90

updateModel () (model.qLearnK.QLearnK
method), 92

updateModel () (model.gLearnMeta.QLearnMeta
method), 94

updateModel () (model.randomBias.RandomBias
method), 96

updateModel () (model.td0.TDO method), 98
updateModel () (model.tdE. TDE method), 100
updateModel () (model.tdrTDR method), 102
utils (module), 124

Vv

validStrategySet (fi-
tAlgs.evolutionary.Evolutionary attribute),
106

varyingParams () (in module utils), 132

W

WBIC2 () (in module fitAlgs.qualityFunc), 118

Weather (class in tasks.weather), 37

weightProb () (in module model.decision.discrete),
41

write () (outputting.LoggerWriter method), 119

Index

145

pyHPDM Documentation, Release 0.9.9

X

x1lsx_fitting_data () (in module dataFitting),
19

146 Index

	Prerequisites
	Installation
	Usage
	Testing
	License
	Documentation
	simulation module
	dataFitting module
	data module
	taskGenerator module
	tasks package
	Submodules
	tasks.balltask module
	tasks.basic module
	tasks.beads module
	tasks.decks module
	tasks.taskTemplate module
	tasks.pavlov module
	tasks.probSelect module
	tasks.probStim module
	tasks.weather module

	modelGenerator module
	model package
	Subpackages
	model.decision package

	Submodules
	model.ACBasic module
	model.ACE module
	model.ACES module
	model.BP module
	model.BPE module
	model.BPV module
	model.OpAL module
	model.OpALE module
	model.OpALS module
	model.OpALSE module
	model.OpAL_H module
	model.OpAL_HE module
	model.modelTemplate module
	model.qLearn module
	model.qLearn2 module
	model.qLearn2E module
	model.qLearnCorr module
	model.qLearnE module
	model.qLearnECorr module
	model.qLearnF module
	model.qLearnK module
	model.qLearnMeta module
	model.randomBias module
	model.td0 module
	model.tdE module
	model.tdr module

	fitAlgs package
	Submodules
	fitAlgs.basinhopping module
	fitAlgs.boundFunc module
	fitAlgs.evolutionary module
	fitAlgs.fitAlg module
	fitAlgs.fitSims module
	fitAlgs.leastsq module
	fitAlgs.minimize module
	fitAlgs.qualityFunc module

	outputting module
	utils module

	Indices and tables
	Python Module Index
	Index

